Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, , 186 - 195, 30.09.2018
https://doi.org/10.32323/ujma.388067

Öz

Kaynakça

  • [1] O. Agrawal, J. Tenreiro Machado, J. Sabatier, Fractional derivatives and their applications, Springer-Verlag, Berlin, 2004;
  • [2] T. Bartolo, V. Benci, D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Analysis, Vol. 7 , No. 9 (1983) 981-1012;
  • [3] N. Nyamoradi, A. Alsaedi, B. Ahmad, Y. Zou, Multiplicity of homoclinic solutions for fractional Hamiltonian systems with subquadratic potential, Entropy 2017, 19,50,1-24;
  • [4] N. Nyamoradi, A. Alsaedi, B. Ahmad, Y. Zou, Variational approach to homoclinic solutions for fractional Hamiltonian systems, J. Optim. Theory Appl. 2017;
  • [5] Z. Bai, H. L ¨ u, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. (2005), 311, 495-505;
  • [6] Z. Bai, Y. Zhang, The existence of solutions for a fractional multi-point boundary value problem, Computers and Mathematics with Applications 2010, 69, 2364-2372;
  • [7] P. Chen, X. He, X.H. Tang, Infinitely many solutions for a class of Hamiltonian systems via critical point theory, Math. Meth. Appl. Sci. 2016, 39, 1005-1019;
  • [8] Y. Li, B. Dai, Existence and multiplicity of nontrivial solutions for Liouville-Weyl fractional nonlinear Schr ¨ odinger equation, RA SAM (2017);
  • [9] W. Jiang, The existence of solutions for boundary value problems of fractional differential equations at resonance, Nonlinear Analysis (2011), 74, 1987-1994;
  • [10] F. Jiao, Y. Zhou, Existence results for fractional boundary value problem via critical point theory, Intern. Journal of Bif. and Chaos, 22, No. 4 (2012), 1-17;
  • [11] R. Hiffer, Applications of fractional calculus in physics, World Science, Singapore, 2000;
  • [12] S. G. Samko, A.A Kilbas, O.I. Marichev, Fractional integrals and derivatives, Theory and applications, Gordon and Breach, Switzerland 1993;
  • [13] A.A. Kilbas, H.M. Srivastawa, J.J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematical Studies; Vol. 204, Singapore 2006;
  • [14] S. Liang, J. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equations, Nonlinear Analysis, 2009, 71, 5545-5550;
  • [15] J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, Springer, Berlin, 1989;
  • [16] A. M`endez, C. Torres, Multiplicity of solutions for fractional Hamiltonian systems with Liouville-Weyl fractional derivative, arXiv: 1409.0765v1[mathph] 2 Sep. 2014;
  • [17] K. Miller, B. Ross, An introduction to differential equations, Wiley and Sons, New York, 1993;
  • [18] I. Pollubny, Fractional differential equations, Academic Press, 1999;
  • [19] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. in Math., Vol. 65, American Mathematical Society, Providence, RI, 1986;
  • [20] K. Tang, Multiple homoclinic solutions for a class of fractional Hamiltonian systems, Progr. Fract. DIff. Appl. 2, , No. 4 (2016), 265-276;
  • [21] C. Torres, Existence of solutions for fractional Hamiltonian systems, Electr. J. DIff. Eq., Vol. 2013 (2013), No. 259, 1-12;
  • [22] C. Torres Ledesma, Existence of solutions for fractional Hamiltonian systems with nonlinear derivative dependence in R, J. Fractional Calculus and Applications; Vol. 7 (2) (2016) 74-87;
  • [23] X. Wu, Z. Zhang, Solutions for perturbed fractional Hamiltonian systems without coercive conditions, Boundary Value Problems (2015) 2015: 149, 1-12;
  • [24] S. Zhang, Existence of solutions for the fractional equations with nonlinear boundary conditions, Computers and Mathematics with Applications (2011), 61, 1202-1208;
  • [25] S. Zhang, Existence of solutions for a boundary value problems of fractional differential equations at resonance, Nonlinear Analysis (2011): 74, 1987-1994;
  • [26] Z. Zhang, R. Yuan, Existence of solutions to fractional Hamiltonian systems with combined nonlinearities, Electr. J. Diff. Eq., Vol. 2016 (2016) No. 40, 1-13;
  • [27] Z. Zhang, R. Yuan, Solutions for subquadratic fractional Hamiltonian systems without coercive conditions, Math. Meth. Appl. Sci. (2014) 37, 2934-2945;
  • [28] Z. Zhang, R. Yuan, Variational approach to solutions for a class of fractional Hamiltonian systems, Math. Meth. Appl. Sci. (2014) 37, 1873-1883;

Multiple solutions for a class of superquadratic fractional Hamiltonian systems

Yıl 2018, , 186 - 195, 30.09.2018
https://doi.org/10.32323/ujma.388067

Öz

In this paper, we are concerned with the existence of solutions for a class of fractional Hamiltonian systems \[\left\{ \begin{array}{l} _{t}D_{\infty}^{\alpha}(_{-\infty}D_{t}^{\alpha}u)(t)+L(t)u(t)=\nabla W(t,u(t)),\ t\in\mathbb{R}\\ u\in H^{\alpha}(\mathbb{R},\ \mathbb{R}^{N}), \end{array}\right. \] where $_{t}D_{\infty}^{\alpha}$ and $_{-\infty}D^{\alpha}_{t}$ are the Liouville-Weyl fractional derivatives of order $\frac{1}{2}<\alpha<1$, $L\in C(\mathbb{R},\mathbb{R}^{N^{2}})$ is a symmetric matrix-valued function and $W(t,x)\in C^{1}(\mathbb{R}\times\mathbb{R}^{N},\mathbb{R})$. Applying a Symmetric Mountain Pass Theorem, we prove the existence of infinitely many solutions for (1) when $L$ is not required to be either uniformly positive definite or coercive and $W(t,x)$ satisfies some weaker superquadratic conditions at infinity in the second variable but does not satisfy the well-known Ambrosetti-Rabinowitz superquadratic growth condition.

Kaynakça

  • [1] O. Agrawal, J. Tenreiro Machado, J. Sabatier, Fractional derivatives and their applications, Springer-Verlag, Berlin, 2004;
  • [2] T. Bartolo, V. Benci, D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Analysis, Vol. 7 , No. 9 (1983) 981-1012;
  • [3] N. Nyamoradi, A. Alsaedi, B. Ahmad, Y. Zou, Multiplicity of homoclinic solutions for fractional Hamiltonian systems with subquadratic potential, Entropy 2017, 19,50,1-24;
  • [4] N. Nyamoradi, A. Alsaedi, B. Ahmad, Y. Zou, Variational approach to homoclinic solutions for fractional Hamiltonian systems, J. Optim. Theory Appl. 2017;
  • [5] Z. Bai, H. L ¨ u, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. (2005), 311, 495-505;
  • [6] Z. Bai, Y. Zhang, The existence of solutions for a fractional multi-point boundary value problem, Computers and Mathematics with Applications 2010, 69, 2364-2372;
  • [7] P. Chen, X. He, X.H. Tang, Infinitely many solutions for a class of Hamiltonian systems via critical point theory, Math. Meth. Appl. Sci. 2016, 39, 1005-1019;
  • [8] Y. Li, B. Dai, Existence and multiplicity of nontrivial solutions for Liouville-Weyl fractional nonlinear Schr ¨ odinger equation, RA SAM (2017);
  • [9] W. Jiang, The existence of solutions for boundary value problems of fractional differential equations at resonance, Nonlinear Analysis (2011), 74, 1987-1994;
  • [10] F. Jiao, Y. Zhou, Existence results for fractional boundary value problem via critical point theory, Intern. Journal of Bif. and Chaos, 22, No. 4 (2012), 1-17;
  • [11] R. Hiffer, Applications of fractional calculus in physics, World Science, Singapore, 2000;
  • [12] S. G. Samko, A.A Kilbas, O.I. Marichev, Fractional integrals and derivatives, Theory and applications, Gordon and Breach, Switzerland 1993;
  • [13] A.A. Kilbas, H.M. Srivastawa, J.J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematical Studies; Vol. 204, Singapore 2006;
  • [14] S. Liang, J. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equations, Nonlinear Analysis, 2009, 71, 5545-5550;
  • [15] J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, Springer, Berlin, 1989;
  • [16] A. M`endez, C. Torres, Multiplicity of solutions for fractional Hamiltonian systems with Liouville-Weyl fractional derivative, arXiv: 1409.0765v1[mathph] 2 Sep. 2014;
  • [17] K. Miller, B. Ross, An introduction to differential equations, Wiley and Sons, New York, 1993;
  • [18] I. Pollubny, Fractional differential equations, Academic Press, 1999;
  • [19] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. in Math., Vol. 65, American Mathematical Society, Providence, RI, 1986;
  • [20] K. Tang, Multiple homoclinic solutions for a class of fractional Hamiltonian systems, Progr. Fract. DIff. Appl. 2, , No. 4 (2016), 265-276;
  • [21] C. Torres, Existence of solutions for fractional Hamiltonian systems, Electr. J. DIff. Eq., Vol. 2013 (2013), No. 259, 1-12;
  • [22] C. Torres Ledesma, Existence of solutions for fractional Hamiltonian systems with nonlinear derivative dependence in R, J. Fractional Calculus and Applications; Vol. 7 (2) (2016) 74-87;
  • [23] X. Wu, Z. Zhang, Solutions for perturbed fractional Hamiltonian systems without coercive conditions, Boundary Value Problems (2015) 2015: 149, 1-12;
  • [24] S. Zhang, Existence of solutions for the fractional equations with nonlinear boundary conditions, Computers and Mathematics with Applications (2011), 61, 1202-1208;
  • [25] S. Zhang, Existence of solutions for a boundary value problems of fractional differential equations at resonance, Nonlinear Analysis (2011): 74, 1987-1994;
  • [26] Z. Zhang, R. Yuan, Existence of solutions to fractional Hamiltonian systems with combined nonlinearities, Electr. J. Diff. Eq., Vol. 2016 (2016) No. 40, 1-13;
  • [27] Z. Zhang, R. Yuan, Solutions for subquadratic fractional Hamiltonian systems without coercive conditions, Math. Meth. Appl. Sci. (2014) 37, 2934-2945;
  • [28] Z. Zhang, R. Yuan, Variational approach to solutions for a class of fractional Hamiltonian systems, Math. Meth. Appl. Sci. (2014) 37, 1873-1883;
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Mohsen Timoumi

Yayımlanma Tarihi 30 Eylül 2018
Gönderilme Tarihi 1 Şubat 2018
Kabul Tarihi 3 Nisan 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Timoumi, M. (2018). Multiple solutions for a class of superquadratic fractional Hamiltonian systems. Universal Journal of Mathematics and Applications, 1(3), 186-195. https://doi.org/10.32323/ujma.388067
AMA Timoumi M. Multiple solutions for a class of superquadratic fractional Hamiltonian systems. Univ. J. Math. Appl. Eylül 2018;1(3):186-195. doi:10.32323/ujma.388067
Chicago Timoumi, Mohsen. “Multiple Solutions for a Class of Superquadratic Fractional Hamiltonian Systems”. Universal Journal of Mathematics and Applications 1, sy. 3 (Eylül 2018): 186-95. https://doi.org/10.32323/ujma.388067.
EndNote Timoumi M (01 Eylül 2018) Multiple solutions for a class of superquadratic fractional Hamiltonian systems. Universal Journal of Mathematics and Applications 1 3 186–195.
IEEE M. Timoumi, “Multiple solutions for a class of superquadratic fractional Hamiltonian systems”, Univ. J. Math. Appl., c. 1, sy. 3, ss. 186–195, 2018, doi: 10.32323/ujma.388067.
ISNAD Timoumi, Mohsen. “Multiple Solutions for a Class of Superquadratic Fractional Hamiltonian Systems”. Universal Journal of Mathematics and Applications 1/3 (Eylül 2018), 186-195. https://doi.org/10.32323/ujma.388067.
JAMA Timoumi M. Multiple solutions for a class of superquadratic fractional Hamiltonian systems. Univ. J. Math. Appl. 2018;1:186–195.
MLA Timoumi, Mohsen. “Multiple Solutions for a Class of Superquadratic Fractional Hamiltonian Systems”. Universal Journal of Mathematics and Applications, c. 1, sy. 3, 2018, ss. 186-95, doi:10.32323/ujma.388067.
Vancouver Timoumi M. Multiple solutions for a class of superquadratic fractional Hamiltonian systems. Univ. J. Math. Appl. 2018;1(3):186-95.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.