Research Article
BibTex RIS Cite

Year 2025, Volume: 8 Issue: 2, 81 - 93, 27.06.2025
https://doi.org/10.32323/ujma.1631793

Abstract

References

  • [1] H. R. Marasi, H. Afshari, C. B. Zhai, Some existence and uniqueness results for nonlinear fractional partial differential equations, Rocky Mountain J. Math., 47(2) (2017), 571–585. https://doi.org/10.1216/RMJ-2017-47-2-571
  • [2] D.B. Pachpatte, Existence and stability of some nonlinear ψ-Hilfer partial fractional differential equation, Partial Differential Equations in Applied Mathematics, 3 (2021), Article ID 100032. https://doi.org/10.1016/j.padiff.2021.100032
  • [3] L. Deng, A. Ducrot, Existence of multi-dimensional pulsating fronts for KPP equations: a new formulation approach, Calc. Var. Partial Differential Equations, 62 (2023), Article ID 134. https://doi.org/10.1007/s00526-023-02473-y
  • [4] R. Shah, H. Khan, P. Kumam, M. Arif, An analytical technique to solve the system of nonlinear fractional partial differential equations, Mathematics, 7(6) (2019), Article ID 505. https://doi.org/10.3390/math7060505
  • [5] P. Jena, S. M. S. Mishra, A. A. Al-Moneef, A. A. Hindi, K. S. Nisar, The solution of nonlinear time-fractional differential equations: an approximate analytical approach, Progress in Fractional Differentiation and Applications, 8(1) (2022), 191–204. http://dx.doi.org/10.18576/pfda/080112
  • [6] M. N. Koleva, L. G. Vulkov, Numerical analysis of direct and inverse problems for a fractional parabolic integro-differential equation, Fractal Fract., 7(8) (2023), Article ID 601. https://doi.org/10.3390/fractalfract7080601
  • [7] R. P. Agarwal, V. Lakshmikantham, J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal., 72(6) (2010), 2859–2862. https://doi.org/10.1016/j.na.2009.11.029
  • [8] S. Arshad, V. Lupulescu, On the fractional differential equations with uncertainty, Nonlinear Anal., 74(11) (2011), 3685–3693. https://doi.org/10.1016/j.na.2011.02.048
  • [9] M. Hukuhara, Integration des applications measurables dont la valuer est un compact convexe, Funkcialaj Ekvacioj, 10(3) (1967), 205–223.
  • [10] B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets and systems, 230 (2013), 119-141. https://doi.org/10.1016/j.fss.2012.10.003
  • [11] B. Shiri, A unified generalization for Hukuhara types differences and derivatives: Solid analysis and comparisons, AIMS Math., 8(1) (2023), 2168–2190.https://doi.org/10.3934/math.2023112
  • [12] F. Longo, B. Laiate, M. C. Gadotti, J. F. da CA Meyer, Characterization results of generalized differentiabilities of fuzzy functions, Fuzzy Sets Syst., 490 (2024), Article ID 109038. https://doi.org/10.1016/j.fss.2024.109038
  • [13] S. Salahshour, T. Allahviranloo, S. Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Commun. Nonlinear Sci. Numer. Simul., 17(3) (2012), 1372–1381. https://doi.org/10.1016/j.cnsns.2011.07.005
  • [14] H. V. Long, N. T. Son, H. T. Tam, The solvability of fuzzy fractional partial differential equations under Caputo gH-differentiability, Fuzzy Sets Syst., 309 (2017), 35–63. https://doi.org/10.1016/j.fss.2016.06.018
  • [15] M. A. Alqudah, R. Ashraf, S. Rashid, J. Singh, Z. Hammouch, T. Abdeljawad, Novel numerical investigations of fuzzy Cauchy reaction–diffusion models via generalized fuzzy fractional derivative operators, Fractal Fract., 5(4) (2021), Article ID 151. https://doi.org/10.3390/fractalfract5040151
  • [16] N. A. Saeed, D. B. Pachpatte, A modified fuzzy Adomian decomposition method for solving time-fuzzy fractional partial differential equations with initial and boundary conditions, Bound. Value Probl., 2024(1) (2024), Article ID 82. https://doi.org/10.1186/s13661-024-01885-9
  • [17] R. Alikhani, F. Bahrami, Global solutions for nonlinear fuzzy fractional integral and integrodifferential equations, Commun. Nonlinear Sci., 18 (2013), 2007–2017.
  • [18] A. Armand, Z. Gouyandeh, Fuzzy fractional integro-differential equations under generalized Caputo differentiability, Ann. Fuzzy Math. Inform., 10 (2015), 789–798.
  • [19] O. H. Mohammed, O. I. Khaleel, Fractional differential transform method for solving fuzzy integro-differential equations of fractional order, Basrah J. Sci., 34 (2016), 31–40.
  • [20] V. Padmapriya, M. Kaliyappan, V. Parthiban, Solution of fuzzy fractional Integro-Differential equations using a domain decomposition method, J. Inform. Math. Sci., 9 (2017), 501-507.
  • [21] S. Rashid, M. K. Kaabar, A. Althobaiti, M. S. Alqurashi, Constructing analytical estimates of the fuzzy fractional-order Boussinesq model and their application in oceanography, J. Ocean Eng. Sci., 8(2) (2023), 196–215. https://doi.org/10.1016/j.joes.2022.01.003
  • [22] M. R. Nourizadeh, T. Allahviranloo, N. Mikaeilvand, Positive solutions of fuzzy fractional Volterra integro-differential equations with the fuzzy Caputo fractional derivative using the Jacobi polynomials operational matrix, Int. J. Comput. Sci. Netw. Secur., 18 (2018), 241–252.
  • [23] M. R. M. Shabestari, R. Ezzati, T. Allahviranloo, Numerical solution of fuzzy fractional integro-differential equation via two-dimensional Legendre wavelet method, J. Intell. Fuzzy Syst., 34(4) (2018), 2453–2465. https://doi.org/10.3233/JIFS-171707
  • [24] B. Shiri, Z. Alijani, Y. Karaca, A power series method for the fuzzy fractional logistic differential equation, Fractals, 31(10) (2023), Article ID 2340086. https://doi.org/10.1142/S0218348X23400868
  • [25] M. Alaroud, M. Al-Smadi, R. Ahmad, U. K. Din, An analytical numerical method for solving fuzzy fractional Volterra integro-differential equations, Symmetry, 11(2) (2019), Article ID 205. https://doi.org/10.3390/sym11020205
  • [26] H. Hashemi, R. Ezzati, N. Mikaeilvand, M. Nazari, Study on fuzzy fractional European option pricing model with Mittag-Leffler kernel, J. Intell. Fuzzy Syst., 45(5) (2023), 8567-8582.
  • [27] S. Ahsan, R. Nawaz, M. Akbar, S. Abdullah, K. S. Nisar, V. Vijayakumar, Numerical solution of system of fuzzy fractional order Volterra integrodifferential equation using optimal homotopy asymptotic method, AIMS Math., 7(7) (2022), 13169–13191. https://doi.org/10.3934/math.2022726
  • [28] T. Allahviranloo, Fuzzy Fractional Differential Operators and Equations: Fuzzy Fractional Differential Equations, Springer Nature, 2020. https://doi.org/10.1007/978-3-030-51272-9
  • [29] B. Shiri, D. Baleanu, C. Y. Ma, Pathological study on uncertain numbers and proposed solutions for discrete fuzzy fractional order calculus, Open Phys., 21(1) (2023), Article ID 20230135. http://dx.doi.org/10.1515/phys-2023-0135
  • [30] B. Shiri, I. Perfieliva, Z. Alijani, Classical approximation for fuzzy Fredholm integral equation, Fuzzy Sets Syst., 404 (2021), 159–177. https://doi.org/10.1016/j.fss.2020.03.023
  • [31] S. Hartman, J. Mikusinski, The Theory of Lebesgue Measure and Integration, Elsevier, 2014.
  • [32] G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135(2) (1988), 501–544. https://doi.org/10.1016/0022-247X(88)90170-9
  • [33] P. Pandit, P. Mistry, P. Singh, Population dynamic model of two species solved by fuzzy Adomian decomposition method, Math. Model., Comput. Intell. Tech. Renew. Energy, Proceedings of the First International Conference (MMCITRE 2020), (2021), 493–507. https://doi.org/10.1007/978-981-15-9953-8 42
  • [34] N. A. Saeed, D. B. Pachpatte, Usage of the fuzzy Adomian decomposition method for solving some fuzzy fractional partial differential equations, Adv. Fuzzy Syst., 2024(1) (2024), Article ID 8794634. https://doi.org/10.1155/2024/8794634
  • [35] A. Ullah, A. Ullah, S. Ahmad, I. Ahmad, A. Akgül, On solutions of fuzzy fractional order complex population dynamical model, Numer. Methods Partial Differential Equations, 39(6) (2020), 4595–4615. https://doi.org/10.1002/num.22654
  • [36] A. Georgieva, A. Pavlova, Fuzzy Sawi decomposition method for solving nonlinear partial fuzzy differential equations, Symmetry, 13(9) (2021), Article ID 1580. https://doi.org/10.3390/sym13091580
  • [37] K. Shah, A. R. Seadawy, M. Arfan, Evaluation of one dimensional fuzzy fractional partial differential equations, Alex. Eng. J., 59(5) (2020), 3347–3353. https://doi.org/10.1016/j.aej.2020.05.003
  • [38] S. Askari, T. Allahviranloo, S. Abbasbandy, Solving fuzzy fractional differential equations by Adomian decomposition method used in optimal control theory, Int. Transact. J. Eng. Manage. Appl. Sci. Technol., 10(12) (2019), 1–10.
  • [39] M. Osman, Y. Xia, M. Marwan, O. A. Omer, Novel approaches for solving fuzzy fractional partial differential equations, Fractal Fract., 6(11) (2022), Article ID 656. https://doi.org/10.3390/fractalfract6110656
  • [40] Z. Alijani, B. Shiri, I. Perfilieva, D. Baleanu, Numerical solution of a new mathematical model for intravenous drug administration, Evol. Intell., 17 (2024), 559–575. https://doi.org/10.1007/s12065-023-00840-4

Fuzzy Solutions of Fuzzy Fractional Parabolic Integro Differential Equations

Year 2025, Volume: 8 Issue: 2, 81 - 93, 27.06.2025
https://doi.org/10.32323/ujma.1631793

Abstract

This work primarily investigates the numerical solution of fuzzy fractional parabolic integro-differential equations of the Volterra type with the time derivative defined in the Caputo sense using the fuzzy Adomian decomposition method. Fuzzy fractional partial integro-differential equations pose significant mathematical challenges due to the interplay between fuzziness and fractional-order dynamics, while at the same time, there is a growing need for accurate and efficient methods to model real-world phenomena involving uncertainty in physics, biology, and engineering. The fuzzy Adomian decomposition method provides an alternative approach for obtaining approximate fuzzy solutions, and its applicability to such equations has not been studied in detail previously in the literature. Furthermore, existence and uniqueness theorems for the fuzzy fractional partial integro-differential equation are established by considering the differentiability type of the solution. The accuracy and efficiency of the proposed method are demonstrated through a series of numerical experiments.

References

  • [1] H. R. Marasi, H. Afshari, C. B. Zhai, Some existence and uniqueness results for nonlinear fractional partial differential equations, Rocky Mountain J. Math., 47(2) (2017), 571–585. https://doi.org/10.1216/RMJ-2017-47-2-571
  • [2] D.B. Pachpatte, Existence and stability of some nonlinear ψ-Hilfer partial fractional differential equation, Partial Differential Equations in Applied Mathematics, 3 (2021), Article ID 100032. https://doi.org/10.1016/j.padiff.2021.100032
  • [3] L. Deng, A. Ducrot, Existence of multi-dimensional pulsating fronts for KPP equations: a new formulation approach, Calc. Var. Partial Differential Equations, 62 (2023), Article ID 134. https://doi.org/10.1007/s00526-023-02473-y
  • [4] R. Shah, H. Khan, P. Kumam, M. Arif, An analytical technique to solve the system of nonlinear fractional partial differential equations, Mathematics, 7(6) (2019), Article ID 505. https://doi.org/10.3390/math7060505
  • [5] P. Jena, S. M. S. Mishra, A. A. Al-Moneef, A. A. Hindi, K. S. Nisar, The solution of nonlinear time-fractional differential equations: an approximate analytical approach, Progress in Fractional Differentiation and Applications, 8(1) (2022), 191–204. http://dx.doi.org/10.18576/pfda/080112
  • [6] M. N. Koleva, L. G. Vulkov, Numerical analysis of direct and inverse problems for a fractional parabolic integro-differential equation, Fractal Fract., 7(8) (2023), Article ID 601. https://doi.org/10.3390/fractalfract7080601
  • [7] R. P. Agarwal, V. Lakshmikantham, J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal., 72(6) (2010), 2859–2862. https://doi.org/10.1016/j.na.2009.11.029
  • [8] S. Arshad, V. Lupulescu, On the fractional differential equations with uncertainty, Nonlinear Anal., 74(11) (2011), 3685–3693. https://doi.org/10.1016/j.na.2011.02.048
  • [9] M. Hukuhara, Integration des applications measurables dont la valuer est un compact convexe, Funkcialaj Ekvacioj, 10(3) (1967), 205–223.
  • [10] B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets and systems, 230 (2013), 119-141. https://doi.org/10.1016/j.fss.2012.10.003
  • [11] B. Shiri, A unified generalization for Hukuhara types differences and derivatives: Solid analysis and comparisons, AIMS Math., 8(1) (2023), 2168–2190.https://doi.org/10.3934/math.2023112
  • [12] F. Longo, B. Laiate, M. C. Gadotti, J. F. da CA Meyer, Characterization results of generalized differentiabilities of fuzzy functions, Fuzzy Sets Syst., 490 (2024), Article ID 109038. https://doi.org/10.1016/j.fss.2024.109038
  • [13] S. Salahshour, T. Allahviranloo, S. Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Commun. Nonlinear Sci. Numer. Simul., 17(3) (2012), 1372–1381. https://doi.org/10.1016/j.cnsns.2011.07.005
  • [14] H. V. Long, N. T. Son, H. T. Tam, The solvability of fuzzy fractional partial differential equations under Caputo gH-differentiability, Fuzzy Sets Syst., 309 (2017), 35–63. https://doi.org/10.1016/j.fss.2016.06.018
  • [15] M. A. Alqudah, R. Ashraf, S. Rashid, J. Singh, Z. Hammouch, T. Abdeljawad, Novel numerical investigations of fuzzy Cauchy reaction–diffusion models via generalized fuzzy fractional derivative operators, Fractal Fract., 5(4) (2021), Article ID 151. https://doi.org/10.3390/fractalfract5040151
  • [16] N. A. Saeed, D. B. Pachpatte, A modified fuzzy Adomian decomposition method for solving time-fuzzy fractional partial differential equations with initial and boundary conditions, Bound. Value Probl., 2024(1) (2024), Article ID 82. https://doi.org/10.1186/s13661-024-01885-9
  • [17] R. Alikhani, F. Bahrami, Global solutions for nonlinear fuzzy fractional integral and integrodifferential equations, Commun. Nonlinear Sci., 18 (2013), 2007–2017.
  • [18] A. Armand, Z. Gouyandeh, Fuzzy fractional integro-differential equations under generalized Caputo differentiability, Ann. Fuzzy Math. Inform., 10 (2015), 789–798.
  • [19] O. H. Mohammed, O. I. Khaleel, Fractional differential transform method for solving fuzzy integro-differential equations of fractional order, Basrah J. Sci., 34 (2016), 31–40.
  • [20] V. Padmapriya, M. Kaliyappan, V. Parthiban, Solution of fuzzy fractional Integro-Differential equations using a domain decomposition method, J. Inform. Math. Sci., 9 (2017), 501-507.
  • [21] S. Rashid, M. K. Kaabar, A. Althobaiti, M. S. Alqurashi, Constructing analytical estimates of the fuzzy fractional-order Boussinesq model and their application in oceanography, J. Ocean Eng. Sci., 8(2) (2023), 196–215. https://doi.org/10.1016/j.joes.2022.01.003
  • [22] M. R. Nourizadeh, T. Allahviranloo, N. Mikaeilvand, Positive solutions of fuzzy fractional Volterra integro-differential equations with the fuzzy Caputo fractional derivative using the Jacobi polynomials operational matrix, Int. J. Comput. Sci. Netw. Secur., 18 (2018), 241–252.
  • [23] M. R. M. Shabestari, R. Ezzati, T. Allahviranloo, Numerical solution of fuzzy fractional integro-differential equation via two-dimensional Legendre wavelet method, J. Intell. Fuzzy Syst., 34(4) (2018), 2453–2465. https://doi.org/10.3233/JIFS-171707
  • [24] B. Shiri, Z. Alijani, Y. Karaca, A power series method for the fuzzy fractional logistic differential equation, Fractals, 31(10) (2023), Article ID 2340086. https://doi.org/10.1142/S0218348X23400868
  • [25] M. Alaroud, M. Al-Smadi, R. Ahmad, U. K. Din, An analytical numerical method for solving fuzzy fractional Volterra integro-differential equations, Symmetry, 11(2) (2019), Article ID 205. https://doi.org/10.3390/sym11020205
  • [26] H. Hashemi, R. Ezzati, N. Mikaeilvand, M. Nazari, Study on fuzzy fractional European option pricing model with Mittag-Leffler kernel, J. Intell. Fuzzy Syst., 45(5) (2023), 8567-8582.
  • [27] S. Ahsan, R. Nawaz, M. Akbar, S. Abdullah, K. S. Nisar, V. Vijayakumar, Numerical solution of system of fuzzy fractional order Volterra integrodifferential equation using optimal homotopy asymptotic method, AIMS Math., 7(7) (2022), 13169–13191. https://doi.org/10.3934/math.2022726
  • [28] T. Allahviranloo, Fuzzy Fractional Differential Operators and Equations: Fuzzy Fractional Differential Equations, Springer Nature, 2020. https://doi.org/10.1007/978-3-030-51272-9
  • [29] B. Shiri, D. Baleanu, C. Y. Ma, Pathological study on uncertain numbers and proposed solutions for discrete fuzzy fractional order calculus, Open Phys., 21(1) (2023), Article ID 20230135. http://dx.doi.org/10.1515/phys-2023-0135
  • [30] B. Shiri, I. Perfieliva, Z. Alijani, Classical approximation for fuzzy Fredholm integral equation, Fuzzy Sets Syst., 404 (2021), 159–177. https://doi.org/10.1016/j.fss.2020.03.023
  • [31] S. Hartman, J. Mikusinski, The Theory of Lebesgue Measure and Integration, Elsevier, 2014.
  • [32] G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135(2) (1988), 501–544. https://doi.org/10.1016/0022-247X(88)90170-9
  • [33] P. Pandit, P. Mistry, P. Singh, Population dynamic model of two species solved by fuzzy Adomian decomposition method, Math. Model., Comput. Intell. Tech. Renew. Energy, Proceedings of the First International Conference (MMCITRE 2020), (2021), 493–507. https://doi.org/10.1007/978-981-15-9953-8 42
  • [34] N. A. Saeed, D. B. Pachpatte, Usage of the fuzzy Adomian decomposition method for solving some fuzzy fractional partial differential equations, Adv. Fuzzy Syst., 2024(1) (2024), Article ID 8794634. https://doi.org/10.1155/2024/8794634
  • [35] A. Ullah, A. Ullah, S. Ahmad, I. Ahmad, A. Akgül, On solutions of fuzzy fractional order complex population dynamical model, Numer. Methods Partial Differential Equations, 39(6) (2020), 4595–4615. https://doi.org/10.1002/num.22654
  • [36] A. Georgieva, A. Pavlova, Fuzzy Sawi decomposition method for solving nonlinear partial fuzzy differential equations, Symmetry, 13(9) (2021), Article ID 1580. https://doi.org/10.3390/sym13091580
  • [37] K. Shah, A. R. Seadawy, M. Arfan, Evaluation of one dimensional fuzzy fractional partial differential equations, Alex. Eng. J., 59(5) (2020), 3347–3353. https://doi.org/10.1016/j.aej.2020.05.003
  • [38] S. Askari, T. Allahviranloo, S. Abbasbandy, Solving fuzzy fractional differential equations by Adomian decomposition method used in optimal control theory, Int. Transact. J. Eng. Manage. Appl. Sci. Technol., 10(12) (2019), 1–10.
  • [39] M. Osman, Y. Xia, M. Marwan, O. A. Omer, Novel approaches for solving fuzzy fractional partial differential equations, Fractal Fract., 6(11) (2022), Article ID 656. https://doi.org/10.3390/fractalfract6110656
  • [40] Z. Alijani, B. Shiri, I. Perfilieva, D. Baleanu, Numerical solution of a new mathematical model for intravenous drug administration, Evol. Intell., 17 (2024), 559–575. https://doi.org/10.1007/s12065-023-00840-4
There are 40 citations in total.

Details

Primary Language English
Subjects Numerical Solution of Differential and Integral Equations, Partial Differential Equations
Journal Section Articles
Authors

Nagwa Saeed 0000-0002-6731-3971

Deepak Pachpatte 0000-0003-3763-4878

Early Pub Date May 29, 2025
Publication Date June 27, 2025
Submission Date February 2, 2025
Acceptance Date May 28, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Saeed, N., & Pachpatte, D. (2025). Fuzzy Solutions of Fuzzy Fractional Parabolic Integro Differential Equations. Universal Journal of Mathematics and Applications, 8(2), 81-93. https://doi.org/10.32323/ujma.1631793
AMA Saeed N, Pachpatte D. Fuzzy Solutions of Fuzzy Fractional Parabolic Integro Differential Equations. Univ. J. Math. Appl. June 2025;8(2):81-93. doi:10.32323/ujma.1631793
Chicago Saeed, Nagwa, and Deepak Pachpatte. “Fuzzy Solutions of Fuzzy Fractional Parabolic Integro Differential Equations”. Universal Journal of Mathematics and Applications 8, no. 2 (June 2025): 81-93. https://doi.org/10.32323/ujma.1631793.
EndNote Saeed N, Pachpatte D (June 1, 2025) Fuzzy Solutions of Fuzzy Fractional Parabolic Integro Differential Equations. Universal Journal of Mathematics and Applications 8 2 81–93.
IEEE N. Saeed and D. Pachpatte, “Fuzzy Solutions of Fuzzy Fractional Parabolic Integro Differential Equations”, Univ. J. Math. Appl., vol. 8, no. 2, pp. 81–93, 2025, doi: 10.32323/ujma.1631793.
ISNAD Saeed, Nagwa - Pachpatte, Deepak. “Fuzzy Solutions of Fuzzy Fractional Parabolic Integro Differential Equations”. Universal Journal of Mathematics and Applications 8/2 (June2025), 81-93. https://doi.org/10.32323/ujma.1631793.
JAMA Saeed N, Pachpatte D. Fuzzy Solutions of Fuzzy Fractional Parabolic Integro Differential Equations. Univ. J. Math. Appl. 2025;8:81–93.
MLA Saeed, Nagwa and Deepak Pachpatte. “Fuzzy Solutions of Fuzzy Fractional Parabolic Integro Differential Equations”. Universal Journal of Mathematics and Applications, vol. 8, no. 2, 2025, pp. 81-93, doi:10.32323/ujma.1631793.
Vancouver Saeed N, Pachpatte D. Fuzzy Solutions of Fuzzy Fractional Parabolic Integro Differential Equations. Univ. J. Math. Appl. 2025;8(2):81-93.

 23181

Universal Journal of Mathematics and Applications 

29207               

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.