Research Article
BibTex RIS Cite

On Dual Hyperbolic Narayana and Narayana-Lucas Hybrid Quaternions

Year 2025, Volume: 8 Issue: 3, 116 - 125, 17.09.2025
https://doi.org/10.32323/ujma.1686437

Abstract

In this present communication, we introduce the novel concepts of dual hyperbolic Narayana quaternions and dual hyperbolic Narayana-Lucas quaternions within the framework of hybrid numbers. We also explore the connections between these newly defined quaternions and examine the mathematical properties they share. Additionally, we find the recurrence relations, Binet formulas, generating functions, exponential generating functions, and other meaningful identities. These newly introduced quaternions have significant applications in the fields of quantum physics, computer graphics, and robotics. Additionally, these identities and relationships we established also play an important role in the field of number theory and combinatorics.

References

  • [1] Y. Soykan, C. Koc, A detailed study on matrix sequence of generalized Narayana numbers, J. Sci. Res. Rep., 27(6) (2021), 40–64. https://doi.org/10.9734/jsrr/2021/v27i630401
  • [2] F. A. Costabile, M. I. Gualtieri, A. Napoli, Polynomial sequences and their applications, Mathematics, 10(24) (2022), 4804. https://doi.org/10.3390/math10244804
  • [3] W. R. Hamilton, Theory of quaternions, Proc. R. Irish Acad., 3 (1844), 1–16.
  • [4] M. Akyigit, H. H. Kösal, M. Tosun, Fibonacci generalized quaternions, Adv. Appl. Clifford Algebra, 24(3) (2014), 631–641. https://doi.org/10.1007/s00006-014-0458-0
  • [5] C. B. Çimen, A. İpek, On Pell quaternions and Pell-Lucas quaternions, Adv. Appl. Clifford Algebra, 26(1) (2016), 39–51. https://doi.org/10.1007/s00006-015-0571-8
  • [6] D. Tasci, F. Yalcin, Fibonacci-p quaternions, Adv. Appl. Clifford Algebra, 25(1) (2015), 245–254. https://doi.org/10.1007/s00006-014-0472-2
  • [7] C. Flaut, V. Shpakivskyi, On generalized Fibonacci quaternions and Fibonacci-Narayana quaternions, Adv. Appl. Clifford Algebra, 23(3) (2013), 673–688. https://doi.org/10.1007/s00006-013-0388-2
  • [8] A. F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, Amer. Math. Monthly, 70(3) (1963), 289–291. https://doi.org/10.2307/2313129
  • [9] A. F. Horadam, Quaternion recurrence relations, Ulam Q., 2(2) (1993), 23–33.
  • [10] M. R. Iyer, A note on Fibonacci quaternions, Fibonacci Q., 7(3) (1969), 225–229. https://doi.org/10.1080/00150517.1969.12431146
  • [11] M. N. S. Swamy, On generalized Fibonacci quaternions, Fibonacci Q., 11(5) (1973), 547–550. https://doi.org/10.1080/00150517.1973.12430808
  • [12] E. Ozkan, H. Akkuş, Hyperbolic k-Oresme and k-Oresme-Lucas quaternions, Proof, 4 (2024), 141-149. https://doi.org/10.37394/232020.2024.4.14
  • [13] J. Cockle, On systems of algebra involving more than one imaginary; and on equations of the fifth degree, Lond. Edinb. Dubl. Phil. Mag. J. Sci., 35(238) (1849), 434–437. https://doi.org/10.1080/14786444908646384
  • [14] M. Akar, S. Yüce, S. Sahin, On the dual hyperbolic numbers and the complex hyperbolic numbers, J. Comput. Sci. Comput. Math., 8(1) (2018), 1–6. https://doi.org/10.20967/jcscm.2018.01.001
  • [15] F. T. Aydin, Dual-hyperbolic Pell quaternions, J. Discrete Math. Sci. Cryptogr., 25(5) (2020), 1321–1334. https://doi.org/10.1080/09720529.2020.1758367
  • [16] D. Brod, A. Szynal-Liana, I. Włoch, Two generalizations of dual-hyperbolic balancing numbers, Symmetry, 12(11) (2020), Article ID 1866. https://doi.org/10.3390/sym12111866
  • [17] A. Cihan, A. Z. Azak, M. A. Güngör, M. Tosun, A study on dual hyperbolic Fibonacci and Lucas numbers, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat., 27(1) (2019), 35–48. https://doi.org/10.2478/auom-2019-0002
  • [18] M. Özdemir, Introduction to hybrid numbers, Adv. Appl. Clifford Algebra, 28(1) (2018), Article ID 11. https://doi.org/10.1007/s00006-018-0833-3
  • [19] S. Kapoor, P. Kumar, On Narayana-Lucas hybrinomial sequence, Palestine J. Math., 13(4) (2024), 865–872.
  • [20] M. Liana, A. Szynal-Liana, I. Włoch, On Pell hybrinomials, Miskolc Math. Notes, 20(2) (2019), 1051–1062. https://doi.org/10.18514/MMN.2019.2971
  • [21] S. Petroudi, M. Pirouz, A. Özkoç, The Narayana polynomial and Narayana hybrinomial sequences, Konuralp J. Math., 9(1) (2021), 90–99.
  • [22] A. Szynal-Liana, I. Włoch, On Jacobsthal and Jacobsthal-Lucas hybrid numbers, Ann. Math. Silesianae, 33(1) (2019), 276–283. https://doi.org/10.2478/amsil-2018-0009
  • [23] A. Szynal-Liana, I. Włoch, Generalized Fibonacci-Pell hybrinomials, Online J. Anal. Comb., 15 (2020), 1–12.
  • [24] A. Szynal-Liana, I. Włoch, Introduction to Fibonacci and Lucas hybrinomials, Complex Var. Elliptic Equ., 65(10) (2019), 1736–1747. https://doi.org/10.1080/17476933.2019.1681416
  • [25] Y. Soykan, On generalized Narayana numbers, Int. J. Adv. Appl. Math. Mech., 7(3) (2020), 43–56.
There are 25 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Pankaj Kumar 0000-0002-2938-1033

Shilpa Kapoor 0000-0001-9842-6226

Early Pub Date September 5, 2025
Publication Date September 17, 2025
Submission Date April 29, 2025
Acceptance Date July 13, 2025
Published in Issue Year 2025 Volume: 8 Issue: 3

Cite

APA Kumar, P., & Kapoor, S. (2025). On Dual Hyperbolic Narayana and Narayana-Lucas Hybrid Quaternions. Universal Journal of Mathematics and Applications, 8(3), 116-125. https://doi.org/10.32323/ujma.1686437
AMA Kumar P, Kapoor S. On Dual Hyperbolic Narayana and Narayana-Lucas Hybrid Quaternions. Univ. J. Math. Appl. September 2025;8(3):116-125. doi:10.32323/ujma.1686437
Chicago Kumar, Pankaj, and Shilpa Kapoor. “On Dual Hyperbolic Narayana and Narayana-Lucas Hybrid Quaternions”. Universal Journal of Mathematics and Applications 8, no. 3 (September 2025): 116-25. https://doi.org/10.32323/ujma.1686437.
EndNote Kumar P, Kapoor S (September 1, 2025) On Dual Hyperbolic Narayana and Narayana-Lucas Hybrid Quaternions. Universal Journal of Mathematics and Applications 8 3 116–125.
IEEE P. Kumar and S. Kapoor, “On Dual Hyperbolic Narayana and Narayana-Lucas Hybrid Quaternions”, Univ. J. Math. Appl., vol. 8, no. 3, pp. 116–125, 2025, doi: 10.32323/ujma.1686437.
ISNAD Kumar, Pankaj - Kapoor, Shilpa. “On Dual Hyperbolic Narayana and Narayana-Lucas Hybrid Quaternions”. Universal Journal of Mathematics and Applications 8/3 (September2025), 116-125. https://doi.org/10.32323/ujma.1686437.
JAMA Kumar P, Kapoor S. On Dual Hyperbolic Narayana and Narayana-Lucas Hybrid Quaternions. Univ. J. Math. Appl. 2025;8:116–125.
MLA Kumar, Pankaj and Shilpa Kapoor. “On Dual Hyperbolic Narayana and Narayana-Lucas Hybrid Quaternions”. Universal Journal of Mathematics and Applications, vol. 8, no. 3, 2025, pp. 116-25, doi:10.32323/ujma.1686437.
Vancouver Kumar P, Kapoor S. On Dual Hyperbolic Narayana and Narayana-Lucas Hybrid Quaternions. Univ. J. Math. Appl. 2025;8(3):116-25.

 23181

Universal Journal of Mathematics and Applications 

29207               

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.