Research Article
BibTex RIS Cite

Experimental Investigation of Electrical Resistance Properties of High Performance Concretes Produced With Different Types of Additives

Year 2022, Volume: 14 Issue: 2, 958 - 966, 31.07.2022
https://doi.org/10.29137/umagd.1099064

Abstract

Standard concrete is a building material that is not electrically conductive by its nature and has a high electrical resistance to be accepted as an insulator. However, in the last 10 years, researches carried out in this subject has revealed that, reducing the electrical resistance of concrete and making it electrically conductive will provide great opportunities in different application areas and that this property change is a change that can provide significant advantages in different application areas where concrete is used. When the literature is examined, the application areas of reducing the electrical resistance of the concrete and enabling it to conduct electricity include concrete road pavements that can be used against frost and thaw, field room applications produced to prevent electromagnetic wave propagation, and self-deformation change that can be determined according to the electrical resistance change, which can be used in structural health monitoring applications can be counted as special concretes. The basic thing that needs to be done in order to realize all such applications is to change the electrical resistance properties of the concrete and make the concrete a material that can conduct electricity. Within the scope of this study, a study was carried out on the creation of a mixture composition that can be used to change the electrical resistivity properties of concrete. Within the scope of the study, after the production of 25025030 mm concrete slab test elements prepared using 3 different fiber types, electrical resistance properties were measured and which type of mixture and fiber additive reduced the electrical resistance properties of the concrete in the best way and increased the electrical conductivity of the concrete was experimentally investigated

References

  • Auweraer, H. V. D., Peeters, B. 2003. “Sensors and Systems for Structural Health Monitoring” Journal of Structural Control, 10, 117-125.
  • Bontea, D.M., Chung, D.D.L., Lee, G.C. 2000. “Damage in carbon fiber reinforced concrete, monitored by electrical resistance measurement”, Cem. Concr. Res., 30(4), 651–659.
  • Cao, J., Wang, Q., Dai, H. 2003. “Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching,” Physical Review Letters, 90, 157601-157604.
  • Chang, F. K. 1999. “Structural Health Monitoring: A Summary Report” Proceedings of the Second International Workshop on Structural Health Monitoring, Stanford University, Stanford, California, 19-29.
  • Chang, F-K., Prosser, W. H., Schulz, M. J. 2002. “Letter of Introduction from the Editors”, Structural Health Monitoring, 1 (1), 3-6.
  • Chen, B., Liu, J., Wu, K. 2005. “Electrical responses of carbon fiber reinforced cementitous composites to monotonic and cyclic loading”, Cem. Concr. Res.,35(11), 2183–2191.
  • Chen, P.W., Chung, D.D.L. 1995. “Improving the electrical conductivity of composites comprised of short conducting fibers in a non-conducting matrix: the addition of a non-conducting particulate filler”, J. Elect. Mater., 24(1), 47–51.
  • Chen, P.W., Chung, D.D.L. 1996. “Concrete as a new strain/stress sensor”, Composites Part B, 27, 11–23.
  • Chong, K. P., Garboczi, E. J. 2003. “Smart and designer structural materials systems”, Prog. Struct. Engng. Mater., 4, 417-430.
  • Chong, K. P., Garboczi, E. J., Washer, G. 2003. “Health monitoring of civil infrastructures”, Prog. Smart. Mater. Struct, 12, 483-493.
  • Chung, D.D.L. 2002a. “Piezoresistive cement-based materials for strain sensing”, J. Intell. Mater. Syst. Struct., 13(9), 599–609.
  • Chung, D.D.L. 2002b. “Electrical conduction behavior of cement–matrix composites”, J. Mater. Eng. Perf., 11(2), 194–204.
  • Chung, D.D.L. 2003. “Damage in cement-based materials, studied by electrical resistance measurement”, Mater. Sci. Eng. Rev., 42(1), 1–40.
  • Dang, Z. M., Jian, M. J., Xie, D., Yao, S. H., Zhang, L. Q., Bai, J. B. 2008. “Supersensitive linear piezoresistive property in carbon nanotubes/silicone rubber nanocomposites”, Journal of Applied Physics, 104, 24114.
  • Dharap, P., Li, Z., Nagarajaiah, S., Barrera, E. V. 2004. “Nanotube film based on single-wall carbon nanotubes for strain sensing,” Nanotechnology, 15, 379-382.
  • Ehlen, M. A. 1999. BridgeLCC 1.0 Users Manual: Life-cycle Costing Software for Preliminary Bridge Design. Gaithersburg, Maryland: National Institute of Standards and Technology.
  • Ferragut, T. R., Rasmussen, R., Darter, M. I., Harrington, D., Anderson-Wilk, M. 2005. Long-term Plan for Concrete Pavement Research and Technology – The Concrete Pavement Roadmap; Volume II: Tracks. Washington, DC: Federal Highway Administration Publication No. HRT-05-053.
  • Fu, X, Ma, E, Chung, D.D.L., Anderson, W.A. 1997. “Self-monitoring in carbon fiber reinforced mortar by reactance measurement”, Cem. Concr. Res., 27(6), 845–852.
  • Graveen, C., Weiss, W.J., Olek, J., Nantung, T., Gallivan, V.L. 2004. “The Implementation of a Performance Related Specification (PRS) for a Concrete Pavement in Indiana”, Transportation Research Board (TRB) Annual Conference, Washington, DC.
  • Grow, R. J., Wang, Q., Cao, J., Wang, D., Dai, H. 2005. “Piezoresistance of carbon nanotubes on deformable thin-film membranes,” Applied Physics Letters, 86, 93104- 93107.
  • Hoerner, T. E., Darter, M. I. 2000. Improved Prediction Models for PCC Pavement Performance-related Specifications; Volume II: PaveSpec 3.0 User’s Guide. Washington, DC: Federal Highway Administration Publication No. FHWA-RD-00-131.
  • Ishida, T., Maekawa, K. 2000. “An Integrated Computational System for Mass/Energy Generation, Transport, and Mechanics of Materials and Structures”, Concrete Library of Japan Society of Civil Engineers, 36, 129-144.
  • Jacobsen, R. L., Tritt, T. M., Guth, J. R., Ehrlich, A. C., Gillespie, D.J. 1995. “Mechanical properties of vapor-grown carbon fiber,” Carbon, 33, 1217-1221.
  • Koh, H. M., Choo, J. F., Kim, S. K., Kim, C. Y. 2003. “Recent application and development of structural health monitoring systems and intelligent structures in Korea”, Proceedings of the 1st international conference on structural health monitoring and intelligent infrastructure, Nov., Tokyo, Japan, 99-112.
  • Marchand, J. 2001. “Modeling the Behavior of Unsaturated Cement Systems Exposed to Aggressive Chemical Environments”, Materials and Structures, 34 (238), 195-200.
  • Peled, A., Torrents, J. M., Mason, T.O., Shah, S.P., Garboczi, E.J. 2001. “Electrical impedance spectra to monitor damage during tensile loading of cement composites”, ACI Mater. J. 98(4), 313–322.
  • Rajabipour, F., Weiss, W. J. 2006. “Linking Health Monitoring in Concrete Structures with Durability Performance Simulations”, Proceedings of the ASCE Structures Congress, St. Louis, Missouri.
  • Shi, Z.Q., Chung, D.D.L. 1999. “Carbon fiber reinforced concrete for traffic monitoring and weighing in motion”, Cem. Concr. Res., 29(3), 435–439.
  • Thomas, M. D. A., Bentz, E. C. 2001. LIFE-365 Service Life Prediction Model; Users Manual. Lovettsville, Virginia: Silica Fume Association.
  • Tombler, T. W., Zhou, C., Alexseyev, L., Kong, J., Dai, H., Liu, L., Jayanthi, C. S., Tang, M., Wu., S. Y. 2000. “Reversible electromechanical characteristics of carbon nanotubes under localprobe manipulation,” Nature, 405, 769-772.
  • Weiss, W. J. 2001. “Linking Insitu Monitoring with Damage Modeling for Life-Cycle Performance Simulations of the Concrete Infrastructure”, NSF Career Development Plan, National Science Foundation.
  • Wen, S. H., Chung, D. D. L. 2001. “Electric polarization in carbon fiberreinforced cement”, Cement and Concrete Research, 31(1), 141-147.
  • Wen, S. H., Chung, D. D. L. 2007. “Electrical-resistance-based damage selfsensing in carbon fiber reinforced cement”, Carbon 45(4), 710-716.
  • Yazdanbakhsh, A., Grasley, Z., Tyson, B., Abu Al-Rub, R. 2009. “Carbon nanofibers and nanotubes in cementitious materials: Some issues on dispersion and interfacial bond”, ACI Special Publication, 267, 21-34.
  • Yazdanbakhsh, A., Grasley, Z., Tyson, B., Abu Al-Rub, R.K. 2011. “Dispersion quantification of inclusions in composites”. Comp. Part A: Appl. Sci. Manuf., 42(1),75-83.

Farklı Katkı Malzemeleri Kullanılarak Üretilen Yüksek Performanslı Betonların Elektrik Direnç Özelliklerinin Deneysel Olarak İncelenmesi

Year 2022, Volume: 14 Issue: 2, 958 - 966, 31.07.2022
https://doi.org/10.29137/umagd.1099064

Abstract

Standart beton doğası gereği elektrik iletkenliği olmayan, yalıtkan olarak kabul edilebilecek kadar elektrik direnci yüksek olan bir yapı malzemesidir. Ancak betonun elektrik direncinin düşürülmesi ve elektrik iletken hale getirilmesinin farklı uygulama alanlarında çok büyük olanaklar sağlayacağı ve bu özellik değişiminin beton malzemesinin kullanıldığı farklı uygulama alanlarında önemli avantajlar sağlayabilecek bir değişim olduğu son 10 yılda bu konuda yapılan araştırmalar ile ortaya konulmuştur. Literatür incelendiğinde betonun elektrik direncinin azaltılarak elektriği iletmesinin sağlanmasının uygulama alanları arasında don çözülmesine karşı kullanılabilecek beton yol kaplamaları, elektromanyetik dalga yayılımını engellemek amacıyla üretilen sağır oda uygulamaları, yapısal sağlık takibi uygulamalarında kullanılabilecek kendi üzerindeki deformasyon değişimini elektriksel direnç değişimine göre tespit edilebilecek kendiliğinden deformasyon değişimi ifade edilebilen özel betonlar olarak sayılabilir. Bu tür uygulamaların hepsinin gerçekleştirilebilmesi için yapılması gereken temel şey betonun elektrik direnç özelliklerini değiştirerek betonun elektrik iletebilen bir malzeme haline getirilmesidir. Bu çalışma kapsamında betonun elektriksel direnç özelliklerinin değiştirilmesi için kullanılabilecek bir karışım kompozisyonunun oluşturulması ile ilgili bir çalışma yapılmıştır. Çalışma kapsamında 3 farklı katkı kullanılarak hazırlanan 25025030 mm boyutlarında beton plak deney elemanlarının üretilmesinden sonra elektriksel direnç özellikleri ölçülerek hangi türde karışımın ve lif katkısının betonun elektriksel direnç özelliklerini en iyi şekilde düşürdüğü ve betonun elektrik iletimini artırdığı deneysel olarak araştırılmıştır.

References

  • Auweraer, H. V. D., Peeters, B. 2003. “Sensors and Systems for Structural Health Monitoring” Journal of Structural Control, 10, 117-125.
  • Bontea, D.M., Chung, D.D.L., Lee, G.C. 2000. “Damage in carbon fiber reinforced concrete, monitored by electrical resistance measurement”, Cem. Concr. Res., 30(4), 651–659.
  • Cao, J., Wang, Q., Dai, H. 2003. “Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching,” Physical Review Letters, 90, 157601-157604.
  • Chang, F. K. 1999. “Structural Health Monitoring: A Summary Report” Proceedings of the Second International Workshop on Structural Health Monitoring, Stanford University, Stanford, California, 19-29.
  • Chang, F-K., Prosser, W. H., Schulz, M. J. 2002. “Letter of Introduction from the Editors”, Structural Health Monitoring, 1 (1), 3-6.
  • Chen, B., Liu, J., Wu, K. 2005. “Electrical responses of carbon fiber reinforced cementitous composites to monotonic and cyclic loading”, Cem. Concr. Res.,35(11), 2183–2191.
  • Chen, P.W., Chung, D.D.L. 1995. “Improving the electrical conductivity of composites comprised of short conducting fibers in a non-conducting matrix: the addition of a non-conducting particulate filler”, J. Elect. Mater., 24(1), 47–51.
  • Chen, P.W., Chung, D.D.L. 1996. “Concrete as a new strain/stress sensor”, Composites Part B, 27, 11–23.
  • Chong, K. P., Garboczi, E. J. 2003. “Smart and designer structural materials systems”, Prog. Struct. Engng. Mater., 4, 417-430.
  • Chong, K. P., Garboczi, E. J., Washer, G. 2003. “Health monitoring of civil infrastructures”, Prog. Smart. Mater. Struct, 12, 483-493.
  • Chung, D.D.L. 2002a. “Piezoresistive cement-based materials for strain sensing”, J. Intell. Mater. Syst. Struct., 13(9), 599–609.
  • Chung, D.D.L. 2002b. “Electrical conduction behavior of cement–matrix composites”, J. Mater. Eng. Perf., 11(2), 194–204.
  • Chung, D.D.L. 2003. “Damage in cement-based materials, studied by electrical resistance measurement”, Mater. Sci. Eng. Rev., 42(1), 1–40.
  • Dang, Z. M., Jian, M. J., Xie, D., Yao, S. H., Zhang, L. Q., Bai, J. B. 2008. “Supersensitive linear piezoresistive property in carbon nanotubes/silicone rubber nanocomposites”, Journal of Applied Physics, 104, 24114.
  • Dharap, P., Li, Z., Nagarajaiah, S., Barrera, E. V. 2004. “Nanotube film based on single-wall carbon nanotubes for strain sensing,” Nanotechnology, 15, 379-382.
  • Ehlen, M. A. 1999. BridgeLCC 1.0 Users Manual: Life-cycle Costing Software for Preliminary Bridge Design. Gaithersburg, Maryland: National Institute of Standards and Technology.
  • Ferragut, T. R., Rasmussen, R., Darter, M. I., Harrington, D., Anderson-Wilk, M. 2005. Long-term Plan for Concrete Pavement Research and Technology – The Concrete Pavement Roadmap; Volume II: Tracks. Washington, DC: Federal Highway Administration Publication No. HRT-05-053.
  • Fu, X, Ma, E, Chung, D.D.L., Anderson, W.A. 1997. “Self-monitoring in carbon fiber reinforced mortar by reactance measurement”, Cem. Concr. Res., 27(6), 845–852.
  • Graveen, C., Weiss, W.J., Olek, J., Nantung, T., Gallivan, V.L. 2004. “The Implementation of a Performance Related Specification (PRS) for a Concrete Pavement in Indiana”, Transportation Research Board (TRB) Annual Conference, Washington, DC.
  • Grow, R. J., Wang, Q., Cao, J., Wang, D., Dai, H. 2005. “Piezoresistance of carbon nanotubes on deformable thin-film membranes,” Applied Physics Letters, 86, 93104- 93107.
  • Hoerner, T. E., Darter, M. I. 2000. Improved Prediction Models for PCC Pavement Performance-related Specifications; Volume II: PaveSpec 3.0 User’s Guide. Washington, DC: Federal Highway Administration Publication No. FHWA-RD-00-131.
  • Ishida, T., Maekawa, K. 2000. “An Integrated Computational System for Mass/Energy Generation, Transport, and Mechanics of Materials and Structures”, Concrete Library of Japan Society of Civil Engineers, 36, 129-144.
  • Jacobsen, R. L., Tritt, T. M., Guth, J. R., Ehrlich, A. C., Gillespie, D.J. 1995. “Mechanical properties of vapor-grown carbon fiber,” Carbon, 33, 1217-1221.
  • Koh, H. M., Choo, J. F., Kim, S. K., Kim, C. Y. 2003. “Recent application and development of structural health monitoring systems and intelligent structures in Korea”, Proceedings of the 1st international conference on structural health monitoring and intelligent infrastructure, Nov., Tokyo, Japan, 99-112.
  • Marchand, J. 2001. “Modeling the Behavior of Unsaturated Cement Systems Exposed to Aggressive Chemical Environments”, Materials and Structures, 34 (238), 195-200.
  • Peled, A., Torrents, J. M., Mason, T.O., Shah, S.P., Garboczi, E.J. 2001. “Electrical impedance spectra to monitor damage during tensile loading of cement composites”, ACI Mater. J. 98(4), 313–322.
  • Rajabipour, F., Weiss, W. J. 2006. “Linking Health Monitoring in Concrete Structures with Durability Performance Simulations”, Proceedings of the ASCE Structures Congress, St. Louis, Missouri.
  • Shi, Z.Q., Chung, D.D.L. 1999. “Carbon fiber reinforced concrete for traffic monitoring and weighing in motion”, Cem. Concr. Res., 29(3), 435–439.
  • Thomas, M. D. A., Bentz, E. C. 2001. LIFE-365 Service Life Prediction Model; Users Manual. Lovettsville, Virginia: Silica Fume Association.
  • Tombler, T. W., Zhou, C., Alexseyev, L., Kong, J., Dai, H., Liu, L., Jayanthi, C. S., Tang, M., Wu., S. Y. 2000. “Reversible electromechanical characteristics of carbon nanotubes under localprobe manipulation,” Nature, 405, 769-772.
  • Weiss, W. J. 2001. “Linking Insitu Monitoring with Damage Modeling for Life-Cycle Performance Simulations of the Concrete Infrastructure”, NSF Career Development Plan, National Science Foundation.
  • Wen, S. H., Chung, D. D. L. 2001. “Electric polarization in carbon fiberreinforced cement”, Cement and Concrete Research, 31(1), 141-147.
  • Wen, S. H., Chung, D. D. L. 2007. “Electrical-resistance-based damage selfsensing in carbon fiber reinforced cement”, Carbon 45(4), 710-716.
  • Yazdanbakhsh, A., Grasley, Z., Tyson, B., Abu Al-Rub, R. 2009. “Carbon nanofibers and nanotubes in cementitious materials: Some issues on dispersion and interfacial bond”, ACI Special Publication, 267, 21-34.
  • Yazdanbakhsh, A., Grasley, Z., Tyson, B., Abu Al-Rub, R.K. 2011. “Dispersion quantification of inclusions in composites”. Comp. Part A: Appl. Sci. Manuf., 42(1),75-83.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Articles
Authors

Cagatay Belgin 0000-0002-9805-4503

Publication Date July 31, 2022
Submission Date April 8, 2022
Published in Issue Year 2022 Volume: 14 Issue: 2

Cite

APA Belgin, C. (2022). Farklı Katkı Malzemeleri Kullanılarak Üretilen Yüksek Performanslı Betonların Elektrik Direnç Özelliklerinin Deneysel Olarak İncelenmesi. International Journal of Engineering Research and Development, 14(2), 958-966. https://doi.org/10.29137/umagd.1099064

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.