Cerrahi sütür uygulamaları için poli(hegzametilen biguanid) immobilize edilmiş emilmeyen ve antimikrobiyal PET fiber: sentez, karakterizasyon ve in vitro sitouyumluluk değerlendirmesi
Year 2024,
Volume: 16 Issue: 2, 777 - 790, 30.06.2024
Ogün Bozkaya
,
Kübra Günay
,
Esra Bozkaya
,
Metin Arslan
Abstract
Cerrahi sütürler, cerrahi müdahalelerden sonra yaraları kapatmak amacıyla yaygın olarak kullanılan tıbbi cihazlardır. Cerrahi prosedürler sırasında, sütürler çevredeki mikroorganizmalarla temas ederek bakteriyel biyofilmlerin gelişmesine ve ardından cerrahi alan enfeksiyonlarına (CAE) yol açabilir. Bu nedenle bakteri tutunmasını ve kolonizasyonunu engelleyen sütürlerin kullanılması yara iyileşmesinde oldukça önemlidir. CAE oluşumunu en aza indirmek için triklosan ve klorheksidin gibi antiseptiklerle kaplı antimikrobiyal sütürler kullanılmıştır. Ancak çeşitli antiseptiklere ve antibiyotiklere dirençli bakteri suşlarının ortaya çıkması nedeniyle alternatif antimikrobiyal sütürlerin geliştirilmesine yönelik yeni yaklaşımlar gereklidir. Antimikrobiyal ajanlar arasında, poliheksanid (poliheksametilen biguanid, PHMB) geniş spektrumlu antibakteriyel ve antifungal aktiviteye sahip, düşük toksisiteli ve biyouyumlu katyonik bir antiseptiktir. Bu çalışmada cerrahi dikiş ipliği olarak kullanılmak üzere PHMB immobilize edilmiş polietilen tereftalat (PET) liflerin sentezlenmesi amaçlanmıştır. Sentezlenen modifiye PET lifler SEM, FTIR, DSC ve TGA ile karakterize edilmiştir. Bunlara ek olarak modifier PET liflerin ıslanabirliği ve in vitro degradasyon profili araştırılmıştır. Antimikrobiyal etkinlik testleri için S. aureus ve E. coli bakteri suşları kullanılmıştır. Materyallerin in vitro hücre-uyumluluğu (sitotoksisitesi) TS EN ISO 10993-5 standardına göre MTT testi ile değerlendirilmiştir.
References
- Alexander, J. W., Solomkin, J. S., & Edwards, M. J. (2011). Updated recommendations for control of surgical site infections. Annals of surgery, 253(6), 1082-1093.
- Allen, M. J., White, G. F., & Morby, A. P. (2006). The response of Escherichia coli to exposure to the biocide polyhexamethylene biguanide. Microbiology, 152(4), 989-1000.
- Anjum, S., Gupta, A., Kumari, S., & Gupta, B. (2020). Preparation and biological characterization of plasma functionalized poly (ethylene terephthalate) antimicrobial sutures. International Journal of Polymeric Materials and Polymeric Biomaterials, 69(16), 1034-1042.
- Anjum, S., Gupta, A., Sharma, D., Kumari, S., Sahariah, P., Bora, J., Bhan, S., & Gupta, B. (2017). Antimicrobial nature and healing behavior of plasma functionalized polyester sutures. Journal of Bioactive and Compatible Polymers, 32(3), 263-279.
- Anushya, P., Ganesh, S. B., & Jayalakshmi, S. (2022). Evaluation of tensile strength of surgical absorbable and nonabsorbable suture materials after immersion in different fruit juices: An: in vitro: study. Journal of Advanced Pharmaceutical Technology & Research, 13(Suppl 1), S108-S111.
- Arslan, M., & Günay, K. (2019). Synthesis of modified poly (ethylene terephthalate) fibers with antibacterial properties and their characterization. International Journal of Polymeric Materials and Polymeric Biomaterials, 68(14), 811-818.
- Ashraf, S., Akhtar, N., Ghauri, M. A., Rajoka, M. I., Khalid, Z. M., & Hussain, I. (2012). Polyhexamethylene biguanide functionalized cationic silver nanoparticles for enhanced antimicrobial activity. Nanoscale research letters, 7, 1-7.
- Avgoustakis, K. (2005). Polylactic-co-glycolic acid (PLGA). Encyclopedia of biomaterials and biomedical engineering, 1(1), 1-11.
- Bozkaya, E., Türk, M., Ekici, H., & Karahan, S. (2023). Investigation of the biocompatibility and in vivo wound healing effect of Cotinus coggygria extracts. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 1-12. https://doi.org/10.33988/auvfd.1217177
- Bozkaya, O. (2023a). Etilen Oksit Sterilizasyonunun PEEK Bazlı Dental İmplantın Kimyasal Yapısı Üzerine Etkisi. International Journal of Engineering Research and Development, 15(1), 139-150.
- Bozkaya, O. (2023b). Novel Electrospun Cotton-Like Nano/Microfiber from Waste Polycarbonate Plastic for Use as Filler Fiber in Outerwear Textiles. Fibers and Polymers, 1-10.
- Bozkaya, O., Arat, E., Gök, Z. G., Yiğitoğlu, M., & Vargel, İ. (2022). Production and characterization of hybrid nanofiber wound dressing containing Centella asiatica coated silver nanoparticles by mutual electrospinning method. European Polymer Journal, 166, 111023.
- Bozkaya, O., Ekici, H., GÜN GÖK, Z., Bozkaya, E., Ekici, S., Yiğitoğlu, M., & Vargel, İ. (2023). Investigation of the in vitro antibacterial, cytotoxic and in vivo analgesic effects of silver nanoparticles coated with Centella asiatica plant extract. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 70(1), 87-96. https://doi.org/https://doi.org/10.33988/auvfd.1014802
- Bozkaya, O., Yiğitoğlu, M., & Arslan, M. (2012). Investigation on selective adsorption of Hg (II) ions using 4‐vinyl pyridine grafted poly (ethylene terephthalate) fiber. Journal of Applied Polymer Science, 124(2), 1256-1264.
- Byrne, M., & Aly, A. (2019). The Surgical Suture. Aesthetic Surgery Journal, 39(Supplement_2), S67-S72. https://doi.org/10.1093/asj/sjz036
- Chau, T. T., Bruckard, W. J., Koh, P. T. L., & Nguyen, A. V. (2009). A review of factors that affect contact angle and implications for flotation practice. Advances in Colloid and Interface Science, 150(2), 106-115. https://doi.org/https://doi.org/10.1016/j.cis.2009.07.003
- Chu, C. (2013). Materials for absorbable and nonabsorbable surgical sutures. In Biotextiles as medical implants (pp. 275-334). Elsevier.
- Chu, C.-C., & Williams, D. F. (1984). Effects of physical configuration and chemical structure of suture materials on bacterial adhesion: A possible link to wound infection. The American journal of surgery, 147(2), 197-204.
- Coşkun, G., Karaca, E., Hockenberger, A., & Ömeroğlu, S. (2016). İPEK AMELİYAT İPLİKLERİ VE TÜRKİYE’DE ÜRETİM OLANAKLARI [Silk sutures and their production facilities in turkey]. Tekstil ve Mühendis, 23(102), 139-152. https://dergipark.org.tr/en/pub/teksmuh/issue/24718/261443
- Coşkun, R., Birgül, H., & Delibaş, A. (2017). Synthesis of functionalized PET fibers by grafting and modification and their application for Cr(VI) ion removal. Journal of Polymer Research, 25(1), 29. https://doi.org/10.1007/s10965-017-1429-7
- De Paula, G. F., Netto, G. I., & Mattoso, L. H. C. (2011). Physical and chemical characterization of poly (hexamethylene biguanide) hydrochloride. Polymers, 3(2), 928-941.
- Dilamian, M., Montazer, M., & Masoumi, J. (2013). Antimicrobial electrospun membranes of chitosan/poly(ethylene oxide) incorporating poly(hexamethylene biguanide) hydrochloride. Carbohydrate Polymers, 94(1), 364-371. https://doi.org/https://doi.org/10.1016/j.carbpol.2013.01.059
- Ercan, U. K., İbiş, F., Dikyol, C., Horzum, N., Karaman, O., Yıldırım, Ç., Çukur, E., & Demirci, E. A. (2018). Prevention of bacterial colonization on non-thermal atmospheric plasma treated surgical sutures for control and prevention of surgical site infections. PloS One, 13(9), e0202703.
- Gilbert, P., Pemberton, D., & Wilkinson, D. E. (1990). Barrier properties of the Gram‐negative cell envelope towards high molecular weight polyhexamethylene biguanides. Journal of Applied Bacteriology, 69(4), 585-592.
- Grigoras, R. I., Copotoiu, C., Cosarca, A. S., Fulop, E., Mare, A., Barbu, H. M., Hancu, V., Comaneanu, R. M., Suciu, V. I., & Ormenisan, A. (2016). In vitro Study About Bacterial Adhesion to the Surface of Suture Materials Used in Oro-maxilo-facial Surgery. Materiale Plastice, 53(3), 501-504.
- Gün Gök, Z., Demiral, A., Bozkaya, O., & Yiğitoğlu, M. (2021). In situ synthesis of silver nanoparticles on modified poly(ethylene terephthalate) fibers by grafting for obtaining versatile antimicrobial materials. Polymer Bulletin, 78(12), 7241-7260. https://doi.org/10.1007/s00289-020-03486-9
- Gün Gök, Z., Günay, K., Arslan, M., Yiğitoğlu, M., & Vargel, İ. (2020). Coating of modified poly (ethylene terephthalate) fibers with sericin-capped silver nanoparticles for antimicrobial application. Polymer Bulletin, 77(4), 1649-1665.
- Kaehn, K. (2010). Polihexanide: a safe and highly effective biocide. Skin pharmacology and physiology, 23, 7-16.
- Kjaergard, H. K. (2001). Suture support: Is it advantageous? The American journal of surgery, 182(2), S15-S20.
- Koburger, T., Hübner, N.-O., Braun, M., Siebert, J., & Kramer, A. (2010). Standardized comparison of antiseptic efficacy of triclosan, PVP–iodine, octenidine dihydrochloride, polyhexanide and chlorhexidine digluconate. Journal of Antimicrobial Chemotherapy, 65(8), 1712-1719.
- Li, H., Wang, Z., Robledo-Lara, J. A., He, J., Huang, Y., & Cheng, F. (2021). Antimicrobial Surgical Sutures: Fabrication and Application of Infection Prevention and Wound Healing. Fibers and Polymers, 22(9), 2355-2367.
- Liang, A., Zhang, M., Luo, H., Niu, L., Feng, Y., & Li, M. (2020). Porous poly (hexamethylene biguanide) hydrochloride loaded silk fibroin sponges with antibacterial function. Materials, 13(2), 285.
- Liang, L., J Lis Arias, M., Lou, Z., Mao, Q., Ye, C., & Meng, X. (2019). Preparation of hydrophobic fabrics and effect of fluorine monomers on surface properties. Journal of Engineered Fibers and Fabrics, 14, 1558925019889619.
- Marsidi, N., Vermeulen, S. A., Horeman, T., & Genders, R. E. (2020). Measuring Forces in Suture Techniques for Wound Closure. journal of surgical research, 255, 135-143.
- Mashat, B. (2016). Polyhexamethylene biguanide hydrochloride: features and applications. British Journal of Environmental Sciences, 4(1), 49-55.
- Masini, B. D., Stinner, D. J., Waterman, S. M., & Wenke, J. C. (2011). Bacterial adherence to suture materials. Journal of surgical education, 68(2), 101-104.
- Obermeier, A., Schneider, J., Föhr, P., Wehner, S., Kühn, K.-D., Stemberger, A., Schieker, M., & Burgkart, R. (2015). In vitro evaluation of novel antimicrobial coatings for surgical sutures using octenidine. BMC microbiology, 15(1), 1-8.
- Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and environmental microbiology, 73(6), 1712-1720.
- Phan, P. T., Hoang, T. T., Thai, M. T., Low, H., Davies, J., Lovell, N. H., & Do, T. N. (2021). Smart surgical sutures using soft artificial muscles. Scientific reports, 11(1), 1-16.
- Raut, A. (2019). Sutureless versus sutured circumcision: A comparative study. Urology Annals, 11(1), 87.
- Rees Clayton, E. M., Todd, M., Dowd, J. B., & Aiello, A. E. (2011). The impact of bisphenol A and triclosan on immune parameters in the US population, NHANES 2003–2006. Environmental health perspectives, 119(3), 390-396.
- Storch, M. L., Rothenburger, S. J., & Jacinto, G. (2004). Experimental efficacy study of coated VICRYL plus antibacterial suture in guinea pigs challenged with Staphylococcus aureus. Surgical infections, 5(3), 281-288.
- Temoçin, Z., & Yiğitoğlu, M. (2009). Studies on the activity and stability of immobilized horseradish peroxidase on poly (ethylene terephthalate) grafted acrylamide fiber. Bioprocess and biosystems engineering, 32(4), 467-474.
- Ünlü, N., Günay, K., & Arslan, M. (2020). Efficient removal of cationic dyes from aqueous solutions using a modified poly (ethylene terephthalate) fibers adsorbent. Polymer-Plastics Technology and Materials, 59(5), 527-535.
- Vinh, D. C., & Embil, J. M. (2005). Device-related infections: a review. Journal of long-term effects of medical implants, 15(5).
- Yang, Y., Yang, S.-B., Wang, Y.-G., Zhang, S.-H., Yu, Z.-F., & Tang, T.-T. (2017). Bacterial inhibition potential of quaternised chitosan-coated VICRYL absorbable suture: An in vitro and in vivo study. Journal of orthopaedic translation, 8, 49-61.
- Yılmaz, D., & Akın, H. (2022). Antimicrobial Effect of Polyhexanide on Denture Base and Soft Lining Materials. Clinical and Experimental Health Sciences, 12(1), 113-119. https://doi.org/10.33808/clinexphealthsci.833576
- Zhao, T., & Chen, Q. (2016). Halogenated phenols and polybiguanides as antimicrobial textile finishes. In Antimicrobial textiles (pp. 141-153). Elsevier.
Poly(hexamethylene biguanide) immobilized non-absorbable and antimicrobial PET fiber for surgical suture applications: synthesis, characterization and in vitro cytocompatibility assessment
Year 2024,
Volume: 16 Issue: 2, 777 - 790, 30.06.2024
Ogün Bozkaya
,
Kübra Günay
,
Esra Bozkaya
,
Metin Arslan
Abstract
Surgical sutures are widely utilized medical devices for the purpose of closing wounds after surgical interventions. During surgical procedures, sutures can come into contact with microorganisms in the surrounding environment, leading to the development of bacterial biofilms and subsequent surgical site infections (SSI). Therefore, the use of sutures that prevent bacterial attachment and colonization is very important in wound healing. Antimicrobial sutures coated with antiseptics such as triclosan and chlorhexidine have been used to minimize SSI formation. However, due to the emergence of bacterial strains resistant to various antiseptics and antibiotics, new approaches to the development of alternative antimicrobial sutures are required. Among antimicrobial agents, polyhexanide (polyhexamethylene biguanide, PHMB) is a cationic antiseptic with broad spectrum antibacterial and antifungal activity, low toxicity and biocompatible. The aim of this study was to synthesize PHMB immobilized polyethylene terephthalate (PET) fibers for use as surgical suture threads. The synthesized modified PET fibers were characterized by SEM, FTIR, DSC and TGA. In addition, the wettability and in vitro degradation profile of the modified PET fibers were investigated. S. aureus and E. coli bacterial strains were used for antimicrobial activity tests. In vitro cytocompatibility (cytotoxicity) of the materials was evaluated by MTT test according to TS EN ISO 10993-5 standard.
Supporting Institution
Kırıkkale University Scientific Commite
Thanks
The authors would like to thank Kırıkkale University Scientific and Technological Research Application and Research Centre (KUBTUAM).
References
- Alexander, J. W., Solomkin, J. S., & Edwards, M. J. (2011). Updated recommendations for control of surgical site infections. Annals of surgery, 253(6), 1082-1093.
- Allen, M. J., White, G. F., & Morby, A. P. (2006). The response of Escherichia coli to exposure to the biocide polyhexamethylene biguanide. Microbiology, 152(4), 989-1000.
- Anjum, S., Gupta, A., Kumari, S., & Gupta, B. (2020). Preparation and biological characterization of plasma functionalized poly (ethylene terephthalate) antimicrobial sutures. International Journal of Polymeric Materials and Polymeric Biomaterials, 69(16), 1034-1042.
- Anjum, S., Gupta, A., Sharma, D., Kumari, S., Sahariah, P., Bora, J., Bhan, S., & Gupta, B. (2017). Antimicrobial nature and healing behavior of plasma functionalized polyester sutures. Journal of Bioactive and Compatible Polymers, 32(3), 263-279.
- Anushya, P., Ganesh, S. B., & Jayalakshmi, S. (2022). Evaluation of tensile strength of surgical absorbable and nonabsorbable suture materials after immersion in different fruit juices: An: in vitro: study. Journal of Advanced Pharmaceutical Technology & Research, 13(Suppl 1), S108-S111.
- Arslan, M., & Günay, K. (2019). Synthesis of modified poly (ethylene terephthalate) fibers with antibacterial properties and their characterization. International Journal of Polymeric Materials and Polymeric Biomaterials, 68(14), 811-818.
- Ashraf, S., Akhtar, N., Ghauri, M. A., Rajoka, M. I., Khalid, Z. M., & Hussain, I. (2012). Polyhexamethylene biguanide functionalized cationic silver nanoparticles for enhanced antimicrobial activity. Nanoscale research letters, 7, 1-7.
- Avgoustakis, K. (2005). Polylactic-co-glycolic acid (PLGA). Encyclopedia of biomaterials and biomedical engineering, 1(1), 1-11.
- Bozkaya, E., Türk, M., Ekici, H., & Karahan, S. (2023). Investigation of the biocompatibility and in vivo wound healing effect of Cotinus coggygria extracts. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 1-12. https://doi.org/10.33988/auvfd.1217177
- Bozkaya, O. (2023a). Etilen Oksit Sterilizasyonunun PEEK Bazlı Dental İmplantın Kimyasal Yapısı Üzerine Etkisi. International Journal of Engineering Research and Development, 15(1), 139-150.
- Bozkaya, O. (2023b). Novel Electrospun Cotton-Like Nano/Microfiber from Waste Polycarbonate Plastic for Use as Filler Fiber in Outerwear Textiles. Fibers and Polymers, 1-10.
- Bozkaya, O., Arat, E., Gök, Z. G., Yiğitoğlu, M., & Vargel, İ. (2022). Production and characterization of hybrid nanofiber wound dressing containing Centella asiatica coated silver nanoparticles by mutual electrospinning method. European Polymer Journal, 166, 111023.
- Bozkaya, O., Ekici, H., GÜN GÖK, Z., Bozkaya, E., Ekici, S., Yiğitoğlu, M., & Vargel, İ. (2023). Investigation of the in vitro antibacterial, cytotoxic and in vivo analgesic effects of silver nanoparticles coated with Centella asiatica plant extract. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 70(1), 87-96. https://doi.org/https://doi.org/10.33988/auvfd.1014802
- Bozkaya, O., Yiğitoğlu, M., & Arslan, M. (2012). Investigation on selective adsorption of Hg (II) ions using 4‐vinyl pyridine grafted poly (ethylene terephthalate) fiber. Journal of Applied Polymer Science, 124(2), 1256-1264.
- Byrne, M., & Aly, A. (2019). The Surgical Suture. Aesthetic Surgery Journal, 39(Supplement_2), S67-S72. https://doi.org/10.1093/asj/sjz036
- Chau, T. T., Bruckard, W. J., Koh, P. T. L., & Nguyen, A. V. (2009). A review of factors that affect contact angle and implications for flotation practice. Advances in Colloid and Interface Science, 150(2), 106-115. https://doi.org/https://doi.org/10.1016/j.cis.2009.07.003
- Chu, C. (2013). Materials for absorbable and nonabsorbable surgical sutures. In Biotextiles as medical implants (pp. 275-334). Elsevier.
- Chu, C.-C., & Williams, D. F. (1984). Effects of physical configuration and chemical structure of suture materials on bacterial adhesion: A possible link to wound infection. The American journal of surgery, 147(2), 197-204.
- Coşkun, G., Karaca, E., Hockenberger, A., & Ömeroğlu, S. (2016). İPEK AMELİYAT İPLİKLERİ VE TÜRKİYE’DE ÜRETİM OLANAKLARI [Silk sutures and their production facilities in turkey]. Tekstil ve Mühendis, 23(102), 139-152. https://dergipark.org.tr/en/pub/teksmuh/issue/24718/261443
- Coşkun, R., Birgül, H., & Delibaş, A. (2017). Synthesis of functionalized PET fibers by grafting and modification and their application for Cr(VI) ion removal. Journal of Polymer Research, 25(1), 29. https://doi.org/10.1007/s10965-017-1429-7
- De Paula, G. F., Netto, G. I., & Mattoso, L. H. C. (2011). Physical and chemical characterization of poly (hexamethylene biguanide) hydrochloride. Polymers, 3(2), 928-941.
- Dilamian, M., Montazer, M., & Masoumi, J. (2013). Antimicrobial electrospun membranes of chitosan/poly(ethylene oxide) incorporating poly(hexamethylene biguanide) hydrochloride. Carbohydrate Polymers, 94(1), 364-371. https://doi.org/https://doi.org/10.1016/j.carbpol.2013.01.059
- Ercan, U. K., İbiş, F., Dikyol, C., Horzum, N., Karaman, O., Yıldırım, Ç., Çukur, E., & Demirci, E. A. (2018). Prevention of bacterial colonization on non-thermal atmospheric plasma treated surgical sutures for control and prevention of surgical site infections. PloS One, 13(9), e0202703.
- Gilbert, P., Pemberton, D., & Wilkinson, D. E. (1990). Barrier properties of the Gram‐negative cell envelope towards high molecular weight polyhexamethylene biguanides. Journal of Applied Bacteriology, 69(4), 585-592.
- Grigoras, R. I., Copotoiu, C., Cosarca, A. S., Fulop, E., Mare, A., Barbu, H. M., Hancu, V., Comaneanu, R. M., Suciu, V. I., & Ormenisan, A. (2016). In vitro Study About Bacterial Adhesion to the Surface of Suture Materials Used in Oro-maxilo-facial Surgery. Materiale Plastice, 53(3), 501-504.
- Gün Gök, Z., Demiral, A., Bozkaya, O., & Yiğitoğlu, M. (2021). In situ synthesis of silver nanoparticles on modified poly(ethylene terephthalate) fibers by grafting for obtaining versatile antimicrobial materials. Polymer Bulletin, 78(12), 7241-7260. https://doi.org/10.1007/s00289-020-03486-9
- Gün Gök, Z., Günay, K., Arslan, M., Yiğitoğlu, M., & Vargel, İ. (2020). Coating of modified poly (ethylene terephthalate) fibers with sericin-capped silver nanoparticles for antimicrobial application. Polymer Bulletin, 77(4), 1649-1665.
- Kaehn, K. (2010). Polihexanide: a safe and highly effective biocide. Skin pharmacology and physiology, 23, 7-16.
- Kjaergard, H. K. (2001). Suture support: Is it advantageous? The American journal of surgery, 182(2), S15-S20.
- Koburger, T., Hübner, N.-O., Braun, M., Siebert, J., & Kramer, A. (2010). Standardized comparison of antiseptic efficacy of triclosan, PVP–iodine, octenidine dihydrochloride, polyhexanide and chlorhexidine digluconate. Journal of Antimicrobial Chemotherapy, 65(8), 1712-1719.
- Li, H., Wang, Z., Robledo-Lara, J. A., He, J., Huang, Y., & Cheng, F. (2021). Antimicrobial Surgical Sutures: Fabrication and Application of Infection Prevention and Wound Healing. Fibers and Polymers, 22(9), 2355-2367.
- Liang, A., Zhang, M., Luo, H., Niu, L., Feng, Y., & Li, M. (2020). Porous poly (hexamethylene biguanide) hydrochloride loaded silk fibroin sponges with antibacterial function. Materials, 13(2), 285.
- Liang, L., J Lis Arias, M., Lou, Z., Mao, Q., Ye, C., & Meng, X. (2019). Preparation of hydrophobic fabrics and effect of fluorine monomers on surface properties. Journal of Engineered Fibers and Fabrics, 14, 1558925019889619.
- Marsidi, N., Vermeulen, S. A., Horeman, T., & Genders, R. E. (2020). Measuring Forces in Suture Techniques for Wound Closure. journal of surgical research, 255, 135-143.
- Mashat, B. (2016). Polyhexamethylene biguanide hydrochloride: features and applications. British Journal of Environmental Sciences, 4(1), 49-55.
- Masini, B. D., Stinner, D. J., Waterman, S. M., & Wenke, J. C. (2011). Bacterial adherence to suture materials. Journal of surgical education, 68(2), 101-104.
- Obermeier, A., Schneider, J., Föhr, P., Wehner, S., Kühn, K.-D., Stemberger, A., Schieker, M., & Burgkart, R. (2015). In vitro evaluation of novel antimicrobial coatings for surgical sutures using octenidine. BMC microbiology, 15(1), 1-8.
- Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and environmental microbiology, 73(6), 1712-1720.
- Phan, P. T., Hoang, T. T., Thai, M. T., Low, H., Davies, J., Lovell, N. H., & Do, T. N. (2021). Smart surgical sutures using soft artificial muscles. Scientific reports, 11(1), 1-16.
- Raut, A. (2019). Sutureless versus sutured circumcision: A comparative study. Urology Annals, 11(1), 87.
- Rees Clayton, E. M., Todd, M., Dowd, J. B., & Aiello, A. E. (2011). The impact of bisphenol A and triclosan on immune parameters in the US population, NHANES 2003–2006. Environmental health perspectives, 119(3), 390-396.
- Storch, M. L., Rothenburger, S. J., & Jacinto, G. (2004). Experimental efficacy study of coated VICRYL plus antibacterial suture in guinea pigs challenged with Staphylococcus aureus. Surgical infections, 5(3), 281-288.
- Temoçin, Z., & Yiğitoğlu, M. (2009). Studies on the activity and stability of immobilized horseradish peroxidase on poly (ethylene terephthalate) grafted acrylamide fiber. Bioprocess and biosystems engineering, 32(4), 467-474.
- Ünlü, N., Günay, K., & Arslan, M. (2020). Efficient removal of cationic dyes from aqueous solutions using a modified poly (ethylene terephthalate) fibers adsorbent. Polymer-Plastics Technology and Materials, 59(5), 527-535.
- Vinh, D. C., & Embil, J. M. (2005). Device-related infections: a review. Journal of long-term effects of medical implants, 15(5).
- Yang, Y., Yang, S.-B., Wang, Y.-G., Zhang, S.-H., Yu, Z.-F., & Tang, T.-T. (2017). Bacterial inhibition potential of quaternised chitosan-coated VICRYL absorbable suture: An in vitro and in vivo study. Journal of orthopaedic translation, 8, 49-61.
- Yılmaz, D., & Akın, H. (2022). Antimicrobial Effect of Polyhexanide on Denture Base and Soft Lining Materials. Clinical and Experimental Health Sciences, 12(1), 113-119. https://doi.org/10.33808/clinexphealthsci.833576
- Zhao, T., & Chen, Q. (2016). Halogenated phenols and polybiguanides as antimicrobial textile finishes. In Antimicrobial textiles (pp. 141-153). Elsevier.