Research Article
BibTex RIS Cite

Avrupa Ölçeğinde Biyoyakıt Tüketim Eğiliminin Rassal Orman Algoritması ile Tahminlenmesi

Year 2025, Volume: 17 Issue: 1, 126 - 136

Abstract

Dünya genelinde enerji talebi, nüfus artışı, ekonomik büyüme ve sanayileşme ile birlikte sürekli yükselen enerji talebinin yanısıra fosil yakıtların çevresel etkileriyle ilişkili endişeler yenilenebilir ve temiz enerjiye olan talebi arttırmıştır. Dünya genelinde yenilenebilir enerjiye geçiş sürecinde, biyoyakıtlar önemli bir rol oynamaktadır. Bu nedenle doğru biyoyakıt tahminlemesi, bölgesel politikaların oluşturulması açısından kritik öneme sahiptir. Böylece politika yapıcıların ülkelerin özkaynaklarını stratejik hedeflerine yönelik tahsis etmeleri, gereken altyapıları planlamaları ve ekonomik büyümeyi desteklemeleri mümkün olabilecektir. Bu çalışmada biyoyakıtların tüketimin trendlerini öngörebilmek amacıyla Rassal Orman Algoritması (ROA) yaklaşımıyla bir tahmin modeli kurulmuştur. Bu amaca yönelik olarak ilk olarak, Avrupa bölgesindeki istatistiksel veriler (Toplam Avrupa ve Diğer Avrupa olmak üzere) 1992-2022 yılları için toplanmıştır. Ardından bu değerler, 2025, 2030 ve 2050 yılları için tahminlenmiştir. ROA ile kurulan tahmin modelinde elde edilen değerler verilen yıllar için en yüksek başarılı sonuçları karar ağacı sayısı 50 iken ve R2 değeri 0.9975 ile bulmuştur. Analizlerden elde edilen sonuçlar, Avrupa özelinde oluşturulan modellerin gelecek planlamaya yönelik yenilenebilir enerji projeksiyonlarında kullanılabileceğini göstermiştir. Elde edilen tüm sonuçlar detaylıca analiz edilerek, Avrupa Birliği Yeşil Mütabakatı doğrultusunda alınabilecek önlem ve gereklilikler yorumlanmıştır.

References

  • Assouline, D., Mohajeri, N., & Scartezzini, J. L. (2018). Large-scale rooftop solar photovoltaic technical potential estimation using Random Forests. Applied energy, 217, 189-211.
  • Aydın-Kandemir, F., & Sarptaş, H. (2022). Toprak Üstü Biyokütle Potansiyelinin CBS ve Uzaktan Algılama ile Belirlenmesi–Yeni Bir Yaklaşım. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 24(70), 165-178.
  • Breiman, L. (1996). Bagging predictors. Machine learning, 24, 123-140.
  • Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
  • Fan, G. F., Zhang, L. Z., Yu, M., Hong, W. C., & Dong, S. Q. (2022). Applications of random forest in multivariable response surface for short-term load forecasting. International Journal of Electrical Power & Energy Systems, 139, 108073.
  • Fawagreh, K., Gaber, M. M., & Elyan, E. (2014). Random forests: from early developments to recent advancements. Systems Science & Control Engineering: An Open Access Journal, 2(1), 602-609.
  • Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE transactions on pattern analysis and machine intelligence, 20(8), 832-844.
  • International Energy Agency. (2021). World Energy Outlook 2021. Son erişim adresi: https://www.iea.org/reports/world-energy-outlook-2021
  • International Renewable Energy Agency. (2023). Renewable Energy Statistics 2023. Son erişim adresi: https://www.irena.org/Publications/2023/Jul/Renewable-energy-statistics-2023.
  • Islam, K. I., Elias, E., Carroll, K. C., & Brown, C. (2023). Exploring random forest machine learning and remote sensing data for streamflow prediction: An alternative approach to a process-based hydrologic modeling in a snowmelt-driven watershed. Remote Sensing, 15(16), 3999.
  • İlleez, B. (2020). Türkiye’de Biyokütle Enerjisi. Türkiye’nin Enerji Görünümü, 317-346.
  • Li, M., Zhang, Y., Wallace, J., & Campbell, E. (2020). Estimating annual runoff in response to forest change: A statistical method based on random forest. Journal of Hydrology, 589, 125168.
  • Lin, Y., Kruger, U., Zhang, J., Wang, Q., Lamont, L., & El Chaar, L. (2015). Seasonal analysis and prediction of wind energy using random forests and ARX model structures. IEEE Transactions on Control Systems Technology, 23(5), 1994-2002.
  • Meenal, R., Binu, D., Ramya, K. C., Michael, P. A., Vinoth Kumar, K., Rajasekaran, E., & Sangeetha, B. (2022). Weather forecasting for renewable energy system: a review. Archives of Computational Methods in Engineering, 29(5), 2875-2891.
  • Meng, M., & Song, C. (2020). Daily photovoltaic power generation forecasting model based on random forest algorithm for north China in winter. Sustainability, 12(6), 2247.
  • Özsin, G., & Pütün, A. E. (2017). Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR. Waste Management, 64, 315-326.
  • Özsin, G., Pütün, A. E., & Pütün, E. (2019). Investigating the interactions between lignocellulosic biomass and synthetic polymers during co-pyrolysis by simultaneous thermal and spectroscopic methods. Biomass Conversion and Biorefinery, 9, 593-608.
  • Paul, S., Mazumder, C., & Mukherjee, S. (2024). Challenges faced in commercialization of biofuel from biomass energy resources. Biocatalysis and Agricultural Biotechnology, 103312.
  • Probst, P., Wright, M. N., & Boulesteix, A. L. (2019). Hyperparameters and tuning strategies for random forest. Wiley Interdisciplinary Reviews: data mining and knowledge discovery, 9(3), e1301.
  • Reid, W. V., Ali, M. K., & Field, C. B. (2020). The future of bioenergy. Global change biology, 26(1), 274-286.
  • Renewables 2021: Analysis and forecasts to 2026. Son erişim adresi: https://www.iea.org/reports/renewables-2021
  • Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. J. O. G. R. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804-818.
  • Sarker, T. R., Nanda, S., Meda, V., & Dalai, A. K. (2023). Densification of waste biomass for manufacturing solid biofuel pellets: a review. Environmental Chemistry Letters, 21(1), 231-264.
  • Senocak, A. A., & Goren, H. G. (2022). Forecasting the biomass-based energy potential using artificial intelligence and geographic information systems: A case study. Engineering Science and Technology, an International Journal, 26, 100992.
  • Seydioğulları, H. S. (2013). Sürdürülebilir kalkınma için yenilenebilir enerji. Planlama Dergisi, 23(1), 19-25.
  • Sözen, E., Gündüz, G., Aydemir, D., & Güngör, E. (2017). Biyokütle kullanımının enerji, çevre, sağlık ve ekonomi açısından değerlendirilmesi. Bartın Orman Fakültesi Dergisi, 19(1), 148-160.
  • Strateji, T. C., & Başkanlığı, B. (2019). Türkiye Sürdürülebilir Kalkınma Amaçları 2. Ulusal Gözden Geçirme Raporu 2019 “Ortak Hedefler İçin Sağlam Temeller”.
  • Tharani, K., Kumar, N., Srivastava, V., Mishra, S., & Pratyush Jayachandran, M. (2020). Machine learning models for renewable energy forecasting. Journal of Statistics and Management Systems, 23(1), 171-180.
  • Topal, M., & Arslan, E. I. (2008). Biyokütle enerjisi ve Türkiye. VII. Ulusal Temiz Enerji Sempozyumu, 17, 19.
  • Torres-Barrán, A., Alonso, Á., & Dorronsoro, J. R. (2019). Regression tree ensembles for wind energy and solar radiation prediction. Neurocomputing, 326, 151-160.
  • Verma, A. K., Chettri, D., & Verma, A. K. (2022). Biomass, bioenergy, and biofuels. In Industrial Microbiology and Biotechnology (pp. 463-485). Singapore: Springer Singapore.
  • Wang, Z., Wang, Y., Zeng, R., Srinivasan, R. S., & Ahrentzen, S. (2018). Random Forest based hourly building energy prediction. Energy and Buildings, 171, 11-25.
  • Yue, D., You, F., & Snyder, S. W. (2014). Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges. Computers & Chemical Engineering, 66, 36-56.

Forecasting the Biofuel Consumption Trend on a European Scale with the Random Forest Algorithm

Year 2025, Volume: 17 Issue: 1, 126 - 136

Abstract

The ever-increasing demand for energy worldwide, driven by population and economic growth, industrialization, as well as concerns about the environmental impact of fossil fuels, has increased the demand for renewable and clean energy. Biofuels play an important role in the worldwide transition to renewable energy. Accurate biofuel forecasting is therefore critical for regional policy making. This will enable policymakers to allocate countries' own resources towards their strategic goals, plan the necessary infrastructure and support economic growth. In this study, a forecasting model is constructed using the Random Forest Algorithm (RFA) approach to predict the trends in biofuels consumption. Therefore, firstly, statistical data for the European region (Total Europe and Other Europe) are collected for 1992-2022. These values are then predicted for the years 2025, 2030 and 2050. The values obtained in the forecasting model have found the highest successful results for the given years with the number of decision trees being 50 and the R2 value is 0.9975. The results showed that the models created for Europe can be used in renewable energy projections for future planning. Obtained results are analyzed, the measures and requirements that can be taken in line with the European Union Green Deal are interpreted.

References

  • Assouline, D., Mohajeri, N., & Scartezzini, J. L. (2018). Large-scale rooftop solar photovoltaic technical potential estimation using Random Forests. Applied energy, 217, 189-211.
  • Aydın-Kandemir, F., & Sarptaş, H. (2022). Toprak Üstü Biyokütle Potansiyelinin CBS ve Uzaktan Algılama ile Belirlenmesi–Yeni Bir Yaklaşım. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 24(70), 165-178.
  • Breiman, L. (1996). Bagging predictors. Machine learning, 24, 123-140.
  • Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
  • Fan, G. F., Zhang, L. Z., Yu, M., Hong, W. C., & Dong, S. Q. (2022). Applications of random forest in multivariable response surface for short-term load forecasting. International Journal of Electrical Power & Energy Systems, 139, 108073.
  • Fawagreh, K., Gaber, M. M., & Elyan, E. (2014). Random forests: from early developments to recent advancements. Systems Science & Control Engineering: An Open Access Journal, 2(1), 602-609.
  • Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE transactions on pattern analysis and machine intelligence, 20(8), 832-844.
  • International Energy Agency. (2021). World Energy Outlook 2021. Son erişim adresi: https://www.iea.org/reports/world-energy-outlook-2021
  • International Renewable Energy Agency. (2023). Renewable Energy Statistics 2023. Son erişim adresi: https://www.irena.org/Publications/2023/Jul/Renewable-energy-statistics-2023.
  • Islam, K. I., Elias, E., Carroll, K. C., & Brown, C. (2023). Exploring random forest machine learning and remote sensing data for streamflow prediction: An alternative approach to a process-based hydrologic modeling in a snowmelt-driven watershed. Remote Sensing, 15(16), 3999.
  • İlleez, B. (2020). Türkiye’de Biyokütle Enerjisi. Türkiye’nin Enerji Görünümü, 317-346.
  • Li, M., Zhang, Y., Wallace, J., & Campbell, E. (2020). Estimating annual runoff in response to forest change: A statistical method based on random forest. Journal of Hydrology, 589, 125168.
  • Lin, Y., Kruger, U., Zhang, J., Wang, Q., Lamont, L., & El Chaar, L. (2015). Seasonal analysis and prediction of wind energy using random forests and ARX model structures. IEEE Transactions on Control Systems Technology, 23(5), 1994-2002.
  • Meenal, R., Binu, D., Ramya, K. C., Michael, P. A., Vinoth Kumar, K., Rajasekaran, E., & Sangeetha, B. (2022). Weather forecasting for renewable energy system: a review. Archives of Computational Methods in Engineering, 29(5), 2875-2891.
  • Meng, M., & Song, C. (2020). Daily photovoltaic power generation forecasting model based on random forest algorithm for north China in winter. Sustainability, 12(6), 2247.
  • Özsin, G., & Pütün, A. E. (2017). Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR. Waste Management, 64, 315-326.
  • Özsin, G., Pütün, A. E., & Pütün, E. (2019). Investigating the interactions between lignocellulosic biomass and synthetic polymers during co-pyrolysis by simultaneous thermal and spectroscopic methods. Biomass Conversion and Biorefinery, 9, 593-608.
  • Paul, S., Mazumder, C., & Mukherjee, S. (2024). Challenges faced in commercialization of biofuel from biomass energy resources. Biocatalysis and Agricultural Biotechnology, 103312.
  • Probst, P., Wright, M. N., & Boulesteix, A. L. (2019). Hyperparameters and tuning strategies for random forest. Wiley Interdisciplinary Reviews: data mining and knowledge discovery, 9(3), e1301.
  • Reid, W. V., Ali, M. K., & Field, C. B. (2020). The future of bioenergy. Global change biology, 26(1), 274-286.
  • Renewables 2021: Analysis and forecasts to 2026. Son erişim adresi: https://www.iea.org/reports/renewables-2021
  • Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. J. O. G. R. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804-818.
  • Sarker, T. R., Nanda, S., Meda, V., & Dalai, A. K. (2023). Densification of waste biomass for manufacturing solid biofuel pellets: a review. Environmental Chemistry Letters, 21(1), 231-264.
  • Senocak, A. A., & Goren, H. G. (2022). Forecasting the biomass-based energy potential using artificial intelligence and geographic information systems: A case study. Engineering Science and Technology, an International Journal, 26, 100992.
  • Seydioğulları, H. S. (2013). Sürdürülebilir kalkınma için yenilenebilir enerji. Planlama Dergisi, 23(1), 19-25.
  • Sözen, E., Gündüz, G., Aydemir, D., & Güngör, E. (2017). Biyokütle kullanımının enerji, çevre, sağlık ve ekonomi açısından değerlendirilmesi. Bartın Orman Fakültesi Dergisi, 19(1), 148-160.
  • Strateji, T. C., & Başkanlığı, B. (2019). Türkiye Sürdürülebilir Kalkınma Amaçları 2. Ulusal Gözden Geçirme Raporu 2019 “Ortak Hedefler İçin Sağlam Temeller”.
  • Tharani, K., Kumar, N., Srivastava, V., Mishra, S., & Pratyush Jayachandran, M. (2020). Machine learning models for renewable energy forecasting. Journal of Statistics and Management Systems, 23(1), 171-180.
  • Topal, M., & Arslan, E. I. (2008). Biyokütle enerjisi ve Türkiye. VII. Ulusal Temiz Enerji Sempozyumu, 17, 19.
  • Torres-Barrán, A., Alonso, Á., & Dorronsoro, J. R. (2019). Regression tree ensembles for wind energy and solar radiation prediction. Neurocomputing, 326, 151-160.
  • Verma, A. K., Chettri, D., & Verma, A. K. (2022). Biomass, bioenergy, and biofuels. In Industrial Microbiology and Biotechnology (pp. 463-485). Singapore: Springer Singapore.
  • Wang, Z., Wang, Y., Zeng, R., Srinivasan, R. S., & Ahrentzen, S. (2018). Random Forest based hourly building energy prediction. Energy and Buildings, 171, 11-25.
  • Yue, D., You, F., & Snyder, S. W. (2014). Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges. Computers & Chemical Engineering, 66, 36-56.
There are 33 citations in total.

Details

Primary Language English
Subjects Industrial Engineering
Journal Section Articles
Authors

Melis Alpaslan Takan 0000-0002-1458-8162

Gamzenur Özsin 0000-0001-5091-5485

Early Pub Date March 3, 2025
Publication Date
Submission Date April 30, 2024
Acceptance Date October 2, 2024
Published in Issue Year 2025 Volume: 17 Issue: 1

Cite

APA Alpaslan Takan, M., & Özsin, G. (2025). Forecasting the Biofuel Consumption Trend on a European Scale with the Random Forest Algorithm. International Journal of Engineering Research and Development, 17(1), 126-136. https://doi.org/10.29137/umagd.1476299

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.