Araştırma Makalesi
BibTex RIS Kaynak Göster

THE EXAMINATION OF CHANGES IN CHEMISTRY TEACHERS’ MENTAL MODELS REGARDING STEM EDUCATION THROUGH A PROFESSIONAL DEVELOPMENT PROGRAM

Yıl 2019, Cilt: 5 Sayı: 3, 22 - 43, 30.12.2019
https://doi.org/10.29065/usakead.645600

Öz

The purpose of this study, which is a
case study that is one of the types of qualitative research, is to investigate
chemistry teachers’ Science, Technology, Engineering, and Mathematics (STEM) mental
models and changes in those models through a-week long professional development
program supported by The Scientific and Technological Research Council of
Turkey. 12 women and 12 men chemistry teachers’ pre- and post-mental models
were examined by the use of ‘STEM Reflection Protocol’ developed by Ring, Dare, Crotty, and Roehrig (2017)
and translated into Turkish by the researchers. In the protocol teachers were
asked to draw their STEM models and then explain the model.  The data collected were analyzed both through
deductive and inductive analysis. Later, to determine if any development
existed in participants’ models,
constant comparative analysis was
carried out through comparing and contrasting pre and post models of each
participant. The pre- models and explanations generally mentioned the relations
among STEM disciplines. However, very few participants included engineering
design process and daily-life problems in pre-models and explanations.
Furthermore, pre-data included less details than post-ones. The participants
had difficulty in drawing their models. After the STEM training provided
through a week, the results showed great development in participants’ STEM
models. For instance, although pre- data did not include teamwork,
communication, and STEM+, models drawn at the end of the development program
integrated those concepts. In the light of the results, given the importance of
teachers’ STEM models in their STEM implementation in class, teachers’ STEM
models should be examined and existing models should be changed with the ones
including STEM characteristics that suggested by the STEM literature. 

Proje Numarası

118B169

Kaynakça

  • Akaygün, S. & Aslan-Tutak, F. (2016). STEM images revealing stem conceptions of preservice chemistry and mathematics teachers. International Journal of Education in Mathematics, Science and Technology, 4(1), 56-71.
  • Aslan-Tutak, F., Akaygün, S., & Tezsezen, S. (2017). İşbirlikli FeTeMM (Fen, Teknoloji, Mühendislik, Matematik) eğitimi uygulaması: Kimya ve matematik öğretmen adaylarının FeTeMM farkındalıklarının incelenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 32(4), 794-816.
  • Aydın-Günbatar, S.A., Tarkın-Çelikkıran, A., Kutucu, E. S. & Ekiz-Kıran, B. (2018). The influence of a design-based elective stem course on pre-service chemistry teachers’ content knowledge, STEM conceptions, and engineering views. Chemistry Education Research and Practice, 19(3), 954-972. doi: 10.1039/C8RP00128.
  • Brown, R., Brown, J., Reardon, K., & Merrill, C. (2011). Understanding STEM: Current perceptions. Technology and Engineering Teacher, 20(6), 5–9.
  • Bybee, R. W. (2013). A case for STEM education. Arlington, VA: National Science Teachers’ Association Press.
  • Cohen, L., Manion, L., & Morrison, K. (2011). Research methods in education. New York, NY: Routledge.
  • Corbin, J., & Strauss, A. (2015). Basics of qualitative research (4th ed.). Thousand Oaks, CA: Sage.
  • Cunningham, C. M., & Carlsen, W. S. (2014). Teaching engineering practices. Journal of Science Teacher Education, 25, 197–210.
  • Çepni, S., & Ormancı, Ü. (2017). Geleceğin dünyası. S. Çepni (Ed.), Kuramdan uygulamaya STEM eğitimi (pp. 1 - 32). Ankara: Pegem Akademi.
  • Çinar, S. , Pirasa, N. & Paliç-Şadoğlu, G. (2016). Views of Science and Mathematics Pre-service Teachers Regarding STEM. Universal Journal of Educational Research,4, 1479-1487.
  • Creswell, J. W. (2003). Research design: Qualitative, quantitative, and mixed methods approaches (2nd ed.). Thousand Oaks, CA: Sage.
  • Dare, E. A., Ring-Whalen, E. A., & Roehrig, G. H. (2019). Creating a continuum of STEM models: Exploring how K-12 science teachers conceptualize STEM education. International Journal of Science Education, 41(12), 1701-1720.
  • EL-Deghaidy, H., Mansour, N., Alzaghibi, M., & Alhammad, K. (2017). Context of STEM integration in schools: Views from in-service science teachers. Eurasia Journal of Mathematics, Science, and Technology Education, 13(6), 2459–2484.
  • Grossman, P., & McDonald, M. (2008). Back to the future: Directions for research in teaching and teacher education. American Educational Research Journal, 45(1), 184–205.
  • Johnson, C. C. (2013) Conceptualizing integrated STEM education. School Science and Mathematics, 113(8), 367-368.
  • Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(1), 11.
  • Kennedy, T. J., & Odell, M. R. L. (2014). Engaging students in STEM education. Science Education International, 25(3), 246-258.
  • Kim, E., Oliver, J. S., & Kim, Y. A. (2019). Engineering design and the development of knowledge for teaching among preservice science teachers. School Science and Mathematics, 119(1), 24-34.
  • Lau, M., & Multani, S. (2018). Engineering STEM Teacher Learning: Using a Museum-Based Field Experience to Foster STEM Teachers’ Pedagogical Content Knowledge for Engineering. İçinde S. M. Uzzo, S. B. Graves, E. Shay, M. Harford, R. Thompson (Eds), Pedagogical content knowledge in STEM (pp. 195-213). Springer, Cham.
  • Kloser, M., Wilsey, M., Twohy, K. E., Immonen, A. D., & Navotas, A. C. (2018). “We do STEM”: Unsettled conceptions of STEM education in middle school STEM classrooms. School Science and Mathematics, 118(8), 335-347.
  • Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources and development of pedagogical content knowledge for science teaching. İçinde J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge: The construct and its implications for science education (pp. 95–132). Boston: Kluwer.
  • Miles, M. B., & Huberman, M. (1994). An expanded sourcebook: Qualitative data analysis (2nd ed.). Thousand Oaks, CA: Sage.
  • Moore, T. J., Stohlman, M. S., Wang, H. H., Tank, K. M., Glancy, A. W., & Roehrig, G. H. (2014). Implementation and integration of engineering in K–12 STEM education. İçinde S. Purzer, J. Strobel, & M. Cardella (Eds.), Engineering in precollege settings: Synthesizing research, policy and practices. West Lafayette, IN: Purdue University Press.
  • National Research Council (NRC), (2010). Standards for K-12 engineering education? Washington, DC: The National Academies Press.
  • National Research Council (NRC), (2011). Successful K-12 STEM education: identifying effective approaches in science, technology,engineering, and mathematics. Washington, DC: National Academies Press.
  • Next Generation Science Standards (NGSS) Lead States, (2013). Next Generation Science Standards: For States, By States. Washington: The National Academies Press.
  • Park, H., Byun, S. Y., Sim, J., Han, H., & Baek, Y. S. (2016). Teachers' Perceptions and Practices of STEAM Education in South Korea. Eurasia Journal of Mathematics, Science & Technology Education, 12(7), 1739-1753.
  • Radloff, J., & Guzey, S. (2017). Investigating changes in preservice teachers’ conceptions of STEM education following video analysis and reflection. School Science and Mathematics, 117(3-4), 158-167.
  • Ring, E. A., Dare, E. A., Crotty, E. A., & Roehrig, G. H. (2017). The Evolution of Teacher Conceptions of STEM Education throughout an Intensive Professional Development Experience. Journal of Science Teacher Education, 28(5), 444-467.
  • Rinke, C. R., Gladstone‐Brown, W., Kinlaw, C. R., & Cappiello, J. (2016). Characterizing STEM teacher education: Affordances and constraints of explicit STEM preparation for elementary teachers. School Science and Mathematics, 116(6), 300-309.
  • Roehrig, G. H., Moore, T. J., Wang, H. H., & Park, M. S. (2012). Is adding the E enough? Investigating the impact of K-12 engineering standards on the implementation of STEM integra¬tion. School Science and Mathematics, 112, 31-44.
  • Sanders, M. E. (2009). STEM, STEMeducation, STEMmania. The Technology Teacher, 1, 20–26.
  • Shernoff D. J., Sinha S., Bressler D. M., & Ginsburg L., (2017). Assessing teacher education and professional development needs for the implementation of integrated approaches to STEM education. International Journal of STEM Education, 4(13), 1–16, Doi. 10.1186/s40594-017-0068-1.
  • Srikoom, W., Faikhamta, C., & Hanuscin, D. (2018). Dimensions of Effective STEM Integrated Teaching Practice. K-12 STEM Education, 4(2), 313-330.
  • Stohlman, M., Moore, T. J., & Roehrig, G. H. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research, 2(1), 28–34.
  • Vossen, T. E., Henze, I., De Vries, M. J., & Van Driel, J. H. (2019). Finding the connection between research and design: the knowledge development of STEM teachers in a professional learning community. International Journal of Technology and Design Education, 1-26.
  • Teo, T. W. & Ke, K. J. (2014). Challenges in STEM teaching: implication for preservice and inservice teacher education program. Theory into Practice, 53(1), 18–24, DOI: 10.1080/00405841. 2014.862116
  • Yıldırım, A. ve Şimşek, H. (2016). Sosyal Bilimlerde Nitel Araştırma Yöntemleri. Seçkin Yayıncılık. Ankara.
  • Wagner, T. (2008). Even our “best” schools are failing to prepare students for 21st-century careers and citizenship. Educational Leadership, 66(2), 20-25.Wheeler, L. B., Whitworth, B., & Gonczi, A. (2014). Engineering design challenge. The Science Teacher, 81(9), 30-36.
  • Wilson, S. M. (2011, April). Effective STEM teacher preparation, induction, and professional development. In NRC Workshop on Highly Successful STEM Schools or Programs. Available: http://www7. nationalacademies. org/bose/Successful_STEM_ Schools_Homepage. html [May 2011].

Kimya Öğretmenlerinin FeTeMM'e Yönelik Zihinsel Modellerindeki Değişimin Hizmet-İçi Öğretmen Eğitimi Boyunca İncelenmesi

Yıl 2019, Cilt: 5 Sayı: 3, 22 - 43, 30.12.2019
https://doi.org/10.29065/usakead.645600

Öz

Nitel araştırma
türlerinden durum çalışması olan bu araştırmanın amacı TÜBİTAK tarafından
desteklenen 4005 projesi kapsamında bir hafta süren Fen, Teknoloji, Mühendislik
ve Matematik (FeTeMM) hizmet içi öğretmen eğitimi programı sırasında eğitime
katılan öğretmenlerin FeTeMM eğitimine ve bileşenlerine dair zihinsel modellerindeki
değişimin incelenmesidir. Çalışmada 12 erkek ve 12 kadın olmak üzere toplam 24
kimya öğretmeninin eğitim öncesi ve sonrası FeTeMM eğitimine ve bileşenlerine
dair zihinsel modelleri Ring, Dare, Crotty ve Roehrig  (2017) tarafından geliştirilen ve
araştırmacılar tarafında Türkçe’ ye çevrilen FeTeMM’ e ilişkin Zihinsel Model
Protokolü uygulanarak incelenmiştir. Protokolde öğretmenlerden hem bir şekil
çizmeleri hem de bu şekli açıklamaları istenmektedir. Çalışmadan elde edilen
veriler hem tümevarım hem de tümdengelim yöntemi birlikte kullanılarak analiz
edilmiştir. Analiz süreci tamamlandıktan sonra öğretmenlerin ilk ve son FeTeMM
modellerinde bir değişim olup olmadığını anlamak için sürekli karşılaştırmalı
analiz metodu kullanılmıştır. Eğitim öncesi Bütünleşik FeTeMM eğitimi
hakkındaki çizimler ve açıklamalar daha çok FeTeMM disiplinleri arasındaki
ilişkiyi göstermiştir. Ancak mühendislik tasarım süreci ve günlük hayat
problemleri çok az katılımcı tarafından değinilmiştir. Ayrıca ilk çizimler
genel olarak değerlendirildiğinde daha az detay içerdikleri ve katılımcıların
tam olarak düşündüklerini çizerek ifade etmekte zorlandıkları görülmektedir.
Projede verilen eğitimlerden sonra yapılan uygulamada ise katılımcıların
Bütünleşik FeTeMM öğretimine yönelik modellerinde ciddi değişimler olduğu
görülmektedir. Örneğin, proje öncesi çizimlerde FeTeMM modellerinde grup çalışması,
iletişim ve FeTeMM+ kavramları bulunmazken, proje sonrası çizimlerde bu
kavramlar yer almıştır. Buradan hareketle, öğretmenlerin zihinlerindeki
modellerin sınıflarındaki FeTeMM uygulamalarındaki önemli rolü düşünüldüğünde, öğretmenlerin
FeTeMM’ e yönelik algılarının incelenmesi ve mevcut algıların alan yazın
tarafından vurgulanan özelliklere sahip algılar ile değiştirilmesi
gerekmektedir. 

Destekleyen Kurum

TÜBİTAK

Proje Numarası

118B169

Teşekkür

Bu araştırma TÜBİTAK 4005 projesi olarak desteklenmiş olan 118B169 numaralı projenin bir ürünüdür.

Kaynakça

  • Akaygün, S. & Aslan-Tutak, F. (2016). STEM images revealing stem conceptions of preservice chemistry and mathematics teachers. International Journal of Education in Mathematics, Science and Technology, 4(1), 56-71.
  • Aslan-Tutak, F., Akaygün, S., & Tezsezen, S. (2017). İşbirlikli FeTeMM (Fen, Teknoloji, Mühendislik, Matematik) eğitimi uygulaması: Kimya ve matematik öğretmen adaylarının FeTeMM farkındalıklarının incelenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 32(4), 794-816.
  • Aydın-Günbatar, S.A., Tarkın-Çelikkıran, A., Kutucu, E. S. & Ekiz-Kıran, B. (2018). The influence of a design-based elective stem course on pre-service chemistry teachers’ content knowledge, STEM conceptions, and engineering views. Chemistry Education Research and Practice, 19(3), 954-972. doi: 10.1039/C8RP00128.
  • Brown, R., Brown, J., Reardon, K., & Merrill, C. (2011). Understanding STEM: Current perceptions. Technology and Engineering Teacher, 20(6), 5–9.
  • Bybee, R. W. (2013). A case for STEM education. Arlington, VA: National Science Teachers’ Association Press.
  • Cohen, L., Manion, L., & Morrison, K. (2011). Research methods in education. New York, NY: Routledge.
  • Corbin, J., & Strauss, A. (2015). Basics of qualitative research (4th ed.). Thousand Oaks, CA: Sage.
  • Cunningham, C. M., & Carlsen, W. S. (2014). Teaching engineering practices. Journal of Science Teacher Education, 25, 197–210.
  • Çepni, S., & Ormancı, Ü. (2017). Geleceğin dünyası. S. Çepni (Ed.), Kuramdan uygulamaya STEM eğitimi (pp. 1 - 32). Ankara: Pegem Akademi.
  • Çinar, S. , Pirasa, N. & Paliç-Şadoğlu, G. (2016). Views of Science and Mathematics Pre-service Teachers Regarding STEM. Universal Journal of Educational Research,4, 1479-1487.
  • Creswell, J. W. (2003). Research design: Qualitative, quantitative, and mixed methods approaches (2nd ed.). Thousand Oaks, CA: Sage.
  • Dare, E. A., Ring-Whalen, E. A., & Roehrig, G. H. (2019). Creating a continuum of STEM models: Exploring how K-12 science teachers conceptualize STEM education. International Journal of Science Education, 41(12), 1701-1720.
  • EL-Deghaidy, H., Mansour, N., Alzaghibi, M., & Alhammad, K. (2017). Context of STEM integration in schools: Views from in-service science teachers. Eurasia Journal of Mathematics, Science, and Technology Education, 13(6), 2459–2484.
  • Grossman, P., & McDonald, M. (2008). Back to the future: Directions for research in teaching and teacher education. American Educational Research Journal, 45(1), 184–205.
  • Johnson, C. C. (2013) Conceptualizing integrated STEM education. School Science and Mathematics, 113(8), 367-368.
  • Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(1), 11.
  • Kennedy, T. J., & Odell, M. R. L. (2014). Engaging students in STEM education. Science Education International, 25(3), 246-258.
  • Kim, E., Oliver, J. S., & Kim, Y. A. (2019). Engineering design and the development of knowledge for teaching among preservice science teachers. School Science and Mathematics, 119(1), 24-34.
  • Lau, M., & Multani, S. (2018). Engineering STEM Teacher Learning: Using a Museum-Based Field Experience to Foster STEM Teachers’ Pedagogical Content Knowledge for Engineering. İçinde S. M. Uzzo, S. B. Graves, E. Shay, M. Harford, R. Thompson (Eds), Pedagogical content knowledge in STEM (pp. 195-213). Springer, Cham.
  • Kloser, M., Wilsey, M., Twohy, K. E., Immonen, A. D., & Navotas, A. C. (2018). “We do STEM”: Unsettled conceptions of STEM education in middle school STEM classrooms. School Science and Mathematics, 118(8), 335-347.
  • Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources and development of pedagogical content knowledge for science teaching. İçinde J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge: The construct and its implications for science education (pp. 95–132). Boston: Kluwer.
  • Miles, M. B., & Huberman, M. (1994). An expanded sourcebook: Qualitative data analysis (2nd ed.). Thousand Oaks, CA: Sage.
  • Moore, T. J., Stohlman, M. S., Wang, H. H., Tank, K. M., Glancy, A. W., & Roehrig, G. H. (2014). Implementation and integration of engineering in K–12 STEM education. İçinde S. Purzer, J. Strobel, & M. Cardella (Eds.), Engineering in precollege settings: Synthesizing research, policy and practices. West Lafayette, IN: Purdue University Press.
  • National Research Council (NRC), (2010). Standards for K-12 engineering education? Washington, DC: The National Academies Press.
  • National Research Council (NRC), (2011). Successful K-12 STEM education: identifying effective approaches in science, technology,engineering, and mathematics. Washington, DC: National Academies Press.
  • Next Generation Science Standards (NGSS) Lead States, (2013). Next Generation Science Standards: For States, By States. Washington: The National Academies Press.
  • Park, H., Byun, S. Y., Sim, J., Han, H., & Baek, Y. S. (2016). Teachers' Perceptions and Practices of STEAM Education in South Korea. Eurasia Journal of Mathematics, Science & Technology Education, 12(7), 1739-1753.
  • Radloff, J., & Guzey, S. (2017). Investigating changes in preservice teachers’ conceptions of STEM education following video analysis and reflection. School Science and Mathematics, 117(3-4), 158-167.
  • Ring, E. A., Dare, E. A., Crotty, E. A., & Roehrig, G. H. (2017). The Evolution of Teacher Conceptions of STEM Education throughout an Intensive Professional Development Experience. Journal of Science Teacher Education, 28(5), 444-467.
  • Rinke, C. R., Gladstone‐Brown, W., Kinlaw, C. R., & Cappiello, J. (2016). Characterizing STEM teacher education: Affordances and constraints of explicit STEM preparation for elementary teachers. School Science and Mathematics, 116(6), 300-309.
  • Roehrig, G. H., Moore, T. J., Wang, H. H., & Park, M. S. (2012). Is adding the E enough? Investigating the impact of K-12 engineering standards on the implementation of STEM integra¬tion. School Science and Mathematics, 112, 31-44.
  • Sanders, M. E. (2009). STEM, STEMeducation, STEMmania. The Technology Teacher, 1, 20–26.
  • Shernoff D. J., Sinha S., Bressler D. M., & Ginsburg L., (2017). Assessing teacher education and professional development needs for the implementation of integrated approaches to STEM education. International Journal of STEM Education, 4(13), 1–16, Doi. 10.1186/s40594-017-0068-1.
  • Srikoom, W., Faikhamta, C., & Hanuscin, D. (2018). Dimensions of Effective STEM Integrated Teaching Practice. K-12 STEM Education, 4(2), 313-330.
  • Stohlman, M., Moore, T. J., & Roehrig, G. H. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research, 2(1), 28–34.
  • Vossen, T. E., Henze, I., De Vries, M. J., & Van Driel, J. H. (2019). Finding the connection between research and design: the knowledge development of STEM teachers in a professional learning community. International Journal of Technology and Design Education, 1-26.
  • Teo, T. W. & Ke, K. J. (2014). Challenges in STEM teaching: implication for preservice and inservice teacher education program. Theory into Practice, 53(1), 18–24, DOI: 10.1080/00405841. 2014.862116
  • Yıldırım, A. ve Şimşek, H. (2016). Sosyal Bilimlerde Nitel Araştırma Yöntemleri. Seçkin Yayıncılık. Ankara.
  • Wagner, T. (2008). Even our “best” schools are failing to prepare students for 21st-century careers and citizenship. Educational Leadership, 66(2), 20-25.Wheeler, L. B., Whitworth, B., & Gonczi, A. (2014). Engineering design challenge. The Science Teacher, 81(9), 30-36.
  • Wilson, S. M. (2011, April). Effective STEM teacher preparation, induction, and professional development. In NRC Workshop on Highly Successful STEM Schools or Programs. Available: http://www7. nationalacademies. org/bose/Successful_STEM_ Schools_Homepage. html [May 2011].
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Alan Eğitimleri
Bölüm Makaleler
Yazarlar

Elif Selcan Öztay 0000-0001-6156-1950

Sevgi Aydın-günbatar 0000-0003-4707-1677

Proje Numarası 118B169
Yayımlanma Tarihi 30 Aralık 2019
Gönderilme Tarihi 11 Kasım 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 5 Sayı: 3

Kaynak Göster

APA Öztay, E. S., & Aydın-günbatar, S. (2019). Kimya Öğretmenlerinin FeTeMM’e Yönelik Zihinsel Modellerindeki Değişimin Hizmet-İçi Öğretmen Eğitimi Boyunca İncelenmesi. Uşak Üniversitesi Eğitim Araştırmaları Dergisi, 5(3), 22-43. https://doi.org/10.29065/usakead.645600

open-access-logo-png-transparent.png   by.png 

Uşak Üniversitesi Eğitim Araştırmaları Dergisinde yayımlanan makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı (CC BY 4.0) ile lisanslanmıştır.