Araştırma Makalesi
BibTex RIS Kaynak Göster

Acute and Chronic Lower Limb Ischaemic Preconditioning Increase the Sprint Triathlon Performance in Athletes

Yıl 2025, Cilt: 11 Sayı: 3, 246 - 255, 30.09.2025
https://doi.org/10.18826/useeabd.1718989

Öz

Aim: This study aimed to investigate the effects of ischemic preconditioning (IPC) on triathlon performance in athletes.
Method: Twenty-four triathletes (8 female, 16 males; mean age: 35.43±1.84 years), with at least 3 years of training and competition experience, participated. Heart rate (HR), blood pressure, rate of perceived exertion (RPE), respiratory frequency, and heart rate variability (HRV) parameters (SDNN, NN50, PNN50, RMSSD, VLF, LF, HF, LF/HF) were measured following rest, sham, and IPC conditions. IPC was applied both acutely (single session) and chronically (7 consecutive days) using a sphygmomanometer cuff inflated to 220 mmHg for 5 minutes, followed by 5 minutes of reperfusion, repeated four times. Sham involved the same protocol with 20 mmHg pressure. Data was analyzed using t-tests.
Results: Triathlon completion time significantly improved after both sham and IPC, but the improvement was greater after IPC (p<0.05). Performance enhancement was more pronounced with chronic IPC. Increased cycling performance largely contributed to the improvement in total triathlon time. Post-exercise heart rate was significantly lower following IPC compared to other conditions (p<0.05), while no other HRV parameters showed significant differences.
Conclusion: IPC significantly enhanced triathlon performance, especially when applied chronically, likely due to reduced heart rate after exercise. However, its effects on other HRV components were limited.

Kaynakça

  • Bailey, T.G., Jones, H., Gregson, W., Atkinson, G., Cable, N.T., & Thijssen, D.H (2012). Effect of ischemic preconditioning on lactate accumulation and running performance. Medicine & Science in Sports & Exercise, 44(11), 2084-2089. https://doi.org/10.1249/mss.0b013e318262cb17
  • Barbosa TC, Machado AC, Braz ID, Fernandes IA, Vianna LC, Nobrega AC, Silva BM (2015). Remote ischemic preconditioning delays fatigue development during handgrip exercise. Scandinavian Journal of Medicine & Science in Sports, 25, 356–364. https://doi.org/10.1111/sms.12229
  • Brooks, G.A (2000). Intra-and extra-cellular lactate shuttles. Medicine and science in sports and exercise, 32(4), 790-799. https://doi.org/10.1097/00005768-200004000-00011
  • Carroll, R., & Yellon, D.M (1999). Myocardial adaptation to ischaemia–the preconditioning phenomenon. International Journal Of Cardiology, 68, S93-S101. https://doi.org/10.1016/S0167-5273(98)00297-6
  • Caru, M., Levesque, A., Lalonde, F., & Curnier, D. (2019). An overview of ischemic preconditioning in exercise performance: A systematic review. Journal of sport and health science, 8(4), 355-369. https://doi.org/10.1016/j.jshs.2019.01.008
  • Chaturvedi, R. R., Lincoln, C., Gothard, J. W., Scallan, M. H., White, P. A., Redington, A. N., & Shore, D. F. (1998). Left ventricular dysfunction after open repair of simple congenital heart defects in infants and children: quantitation with the use of a conductance catheter immediately after bypass. The Journal of Thoracic and Cardiovascular Surgery, 115(1), 77-83. https://doi.org/10.1016/S0022-5223(98)70446-5
  • Clevidence, M. W., Mowery, R. E., & Kushnick, M. R. (2012). The effects of ischemic preconditioning on aerobic and anaerobic variables associated with submaximal cycling performance. European Journal of Applied Physiology, 112, 3649-3654. https://doi.org/10.1007/s00421-012-2345-5
  • Cooper, C.E., & Brown, G.C (2008). The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. Journal of Bioenergetics and Biomembranes, 40(5), 533. https://doi.org/10.1007/s10863-008-9166-6
  • Cruz, R. S. D. O., De Aguiar, R. A., Turnes, T., Pereira, K. L., & Caputo, F. (2015). Effects of ischemic preconditioning on maximal constant-load cycling performance. Journal of Applied Physiology, 119(9), 961-967. https://doi.org/10.1152/japplphysiol.00498.2015
  • De Groot, P. C., Thijssen, D. H., Sanchez, M., Ellenkamp, R., & Hopman, M. T. (2010). Ischemic preconditioning improves maximal performance in humans. European journal of applied physiology, 108, 141-146. https://doi.org/10.1007/s00421-009-1195-2
  • Donato, M., Buchholz, B., Rodríguez, M., Pérez, V., Inserte, J., García‐Dorado, D., & Gelpi, R. J. (2013). Role of the parasympathetic nervous system in cardioprotection by remote hindlimb ischaemic preconditioning. Experimental Physiology, 98(2), 425-434. https://doi.org/10.1113/expphysiol.2012.066217
  • Gibson, N., White, J., Neish, M., & Murray, A. (2013). Effect of ischemic preconditioning on land-based sprinting in team-sport athletes. International Journal of Sports Physiology and Performance, 8(6), 671-676.
  • Giricz, Z., Varga, Z. V., Baranyai, T., Sipos, P., Pálóczi, K., Kittel, Á., ... & Ferdinandy, P. (2014). Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles. Journal of Molecular and Cellular Cardiology, 68, 75-78. https://doi.org/10.1016/j.yjmcc.2014.01.004
  • Hashimoto, T., & Brooks, G. A. (2008). Mitochondrial lactate oxidation complex and an adaptive role for lactate production. Medicine & Science in Sports & Exercise, 40(3), 486-494. https://doi.org/10.1249/mss.0b013e31815fcb04
  • Hausenloy, D.J., Yellon, D.M (2008). Remote ischaemic preconditioning: underlying mechanisms and clinical application. Cardiovascular Research, 79, 377–86. https://doi.org/10.1093/cvr/cvn114
  • Incognito, A. V., Burr, J. F., & Millar, P. J. (2016). The effects of ischemic preconditioning on human exercise performance. Sports Medicine, 46, 531-544. https://doi.org/10.1007/s40279-015-0433-5
  • Jean-St-Michel, E., Manlhiot, C., Li, J., Tropak, M., Michelsen, M. M., Schmidt, M. R., ... & Redington, A. N. (2011). Remote preconditioning improves maximal performance in highly trained athletes. Medicine and Science in Sports and Exercise, 43(7), 1280-1286.https://doi.org/10.1249/mss.0b013e318206845d
  • Kido, K., Suga, T., Tanaka, D., Honjo, T., Homma, T., Fujita, S., ... & Isaka, T. (2015). Ischemic preconditioning accelerates muscle deoxygenation dynamics and enhances exercise endurance during the work‐to‐work test. Physiological Reports, 3(5), e12395. https://doi.org/10.14814/phy2.12395
  • Kilduff, L. P., Finn, C. V., Baker, J. S., Cook, C. J., & West, D. J. (2013). Preconditioning strategies to enhance physical performance on the day of competition. International Journal of Sports Physiology and Performance, 8(6), 677-681.https://doi.org/10.1123/ijspp.8.6.677
  • Kimura, M., Ueda, K., Goto, C., Jitsuiki, D., Nishioka, K., Umemura, T., ... & Higashi, Y. (2007). Repetition of ischemic preconditioning augments endothelium-dependent vasodilation in humans: role of endothelium-derived nitric oxide and endothelial progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(6), 1403-1410. https://doi.org/10.1161/ATVBAHA.107.143578
  • Lalonde, F., & Curnier, D.Y (2015). Can anaerobic performance be improved by remote ischemic preconditioning. The Journal of Strength & Conditioning Research, 29(1), 80-85. https://doi.org/10.1519/JSC.0000000000000609
  • Lawson, C. S., & Downey, J. M. (1993). Preconditioning: state of the art myocardial protection. Cardiovascular Research, 27(4), 542-550. https://doi.org/10.1093/cvr/27.4.542
  • Loukogeorgakis, S. P., Panagiotidou, A. T., Broadhead, M. W., Donald, A., Deanfield, J. E., & MacAllister, R. J. (2005). Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans: Role of the autonomic nervous system. Journal of the American College of Cardiology, 46(3), 450-456. https://www.jacc.org/doi/abs/10.1016/j.jacc.2005.04.044
  • Marocolo, M., da Mota, G. R., Simim, M. A. M., & Coriolano, H. J. A. (2016). Myths and facts about the effects of ischemic preconditioning on performance. International Journal of Sports Medicine, 37(02), 87-96. https://doi.org/10.1055/s-0035-1564253
  • Murry, C. E., Jennings, R. B., & Reimer, K. A. (1986). Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation, 74(5), 1124-1136. https://doi.org/10.1161/01.CIR.74.5.1124
  • Ozkaya, Y. G., Agar, A., Hacioglu, G. Ö. K. Ç. E., Yargicoglu, P., Abidin, I., & Senturk, U. K. (2003). Training induced alterations of visual evoked potentials are not related to body temperature. International Journal of Sports Medicine, 24(05), 359-362. https://doi.org/10.1055/s-2003-40699
  • Pang, C. Y., Neligan, P., Xu, H., He, W., Zhong, A., Hopper, R., & Forrest, C. R. (1997). Role of ATP-sensitive K+ channels in ischemic preconditioning of skeletal muscle against infarction. American Journal of Physiology-Heart and Circulatory Physiology, 273(1), H44-H51.https://doi.org/10.1152/ajpheart.1997.273.1.H44
  • Pang, C. Y., Yang, R. Z., Zhong, A., Xu, N., Boyd, B., & Forrest, C. R. (1995). Acute ischaemic preconditioning protects against skeletal muscle infarction in the pig. Cardiovascular Research, 29(6), 782-788. https://doi.org/10.1016/S0008-6363(96)88613-5
  • Paradis-Deschênes, P., Joanisse, D. R., & Billaut, F. (2016). Ischemic preconditioning increases muscle perfusion, oxygen uptake, and force in strength-trained athletes. Applied Physiology, Nutrition, And Metabolism, 41(9), 938-944. https://doi.org/10.1139/apnm-2015-0561
  • Patel, H. H., Moore, J., Hsu, A. K., & Gross, G. J. (2002). Cardioprotection at a distance: mesenteric artery occlusion protects the myocardium via an opioid sensitive mechanism. Journal of Molecular and Cellular Cardiology, 34(10), 1317-1323. https://doi.org/10.1006/jmcc.2002.2072
  • Pell, T. J., Baxter, G. F., Yellon, D. M., & Drew, G. M. (1998). Renal ischemia preconditions myocardium: role of adenosine receptors and ATP-sensitive potassium channels. American Journal of Physiology-Heart and Circulatory Physiology, 275(5), H1542-H1547. https://doi.org/10.1152/ajpheart.1998.275.5.H1542
  • Peralta, C., Fernández, L., Panés, J., Prats, N., Sans, M., Piqué, J. M., ... & Roselló-Catafau, J. (2001). Preconditioning protects against systemic disorders associated with hepatic ischemia-reperfusion through blockade of tumor necrosis factor–induced P-selectin up-regulation in the rat. Hepatology, 33(1), 100-113. https://doi.org/10.1053/jhep.2001.20529
  • Przyklenk, K., & Whittaker, P. (2011). Remote ischemic preconditioning: current knowledge, unresolved questions, and future priorities. Journal of Cardiovascular Pharmacology and Therapeutics, 16, 255–9. https://doi.org/10.1177/1074248411409040
  • Riksen, N.P., Smits, P., & Rongen, G.A. (2006). Ischaemic preconditioning: From molecular characterisation to clinical application-part I. The Netherlands Journal of Medicine, 62(10), 353-63.
  • Schoemaker, R.G., & Van Heijningen, C.L. (2000). Bradykinin mediates cardiac preconditioning at a distance. Am American Journal of Physiology, 278, H1571–6. https://doi.org/10.1152/ajpheart.2000.278.5.H1571
  • Schulz, R., Cohen, M.V., Behrends, M., Downey, J.M., & Heusch, G. (2001). Signal transduction of ischemic preconditioning. Cardiovascular Research, 52(2), 181-198. https://doi.org/10.1016/S0008-6363(01)00384-4
  • Tocco, F., Marongiu, E., Ghiani, G., Sanna, I., Palazzolo, G., Olla, S., ... & Crisafulli, A. (2015). Muscle ischemic preconditioning does not improve performance during self-paced exercise. International Journal of Sports Medicine, 36(01), 9-15. https://doi.org/10.1055/s-0034-1384546
  • Veighey, K., & MacAllister, R. J. (2012). Clinical applications of remote ischemic preconditioning. Cardiology Research and Practice, 2012(1), 620681. https://doi.org/10.1155/2012/620681
  • Weinbrenner, C., Schulze, F., Sárváry, L., & Strasser, R. H. (2004). Remote preconditioning by infrarenal aortic occlusion is operative via δ1-opioid receptors and free radicals in vivo in the rat heart. Cardiovascular Research, 61(3), 591-599. https://doi.org/10.1016/j.cardiores.2003.10.008
  • Yellon, D. M., & Hausenloy, D. J. (2007). Myocardial reperfusion injury. New England Journal of Medicine, 357(11), 1121-1135. https://doi.org/10.1056/NEJMra071667
  • Ylitalo, K., & Peuhkurinen, K. (2001). Clinical relevance of ischemic preconditioning. Scandinavian Cardiovascular Journal, 35(6), 359-365. https://doi.org/10.1080/14017430152754835

Atletlerde Akut ve Kronik Alt Ekstremite İskemik Ön Koşullama Sprint Triatlon Performansını Artırır

Yıl 2025, Cilt: 11 Sayı: 3, 246 - 255, 30.09.2025
https://doi.org/10.18826/useeabd.1718989

Öz

Amaç: Bu çalışmanın amacı, iskemik ön koşullamanın (IPC) triatlon performansı üzerindeki etkilerini araştırmaktır.
Yöntem: En az 3 yıllık antrenman ve yarışma deneyimine sahip 24 triatlet (8 kadın, 16 erkek; ort. yaş: 35,43±1,84 yıl) çalışmaya katıldı. Kalp atım hızı (KA), kan basıncı, algılanan efor derecesi (RPE), solunum frekansı ve kalp atım hızı değişkenliği (HRV) parametreleri (SDNN, NN50, PNN50, RMSSD, VLF, LF, HF, LF/HF) istirahat, sham ve IPC koşullarında ölçüldü. IPC, manşet ile 220 mmHg’ye şişirilip 5 dakika basınç uygulanması, ardından 5 dakika reperfüzyon şeklinde, 4 kez tekrar edilerek akut (tek seans) ve kronik (7 gün ardışık) olarak uygulandı. Sham koşulunda ise aynı protokol 20 mmHg basınç ile gerçekleştirildi. Veriler t-testi ile analiz edildi.
Bulgular: Triatlon tamamlama süresi hem sham hem de IPC sonrasında anlamlı şekilde iyileşti, ancak IPC sonrasında bu iyileşme daha fazlaydı (p<0,05). Performans artışı özellikle kronik IPC ile daha belirgindi. Toplam triatlon süresindeki iyileşmeye en çok bisiklet performansındaki artış katkıda bulundu. Egzersiz sonrası kalp atım hızı, IPC sonrasında diğer koşullara kıyasla anlamlı derecede daha düşüktü (p<0,05), ancak diğer HRV parametrelerinde anlamlı bir farklılık gözlenmedi.
Sonuç: IPC, özellikle kronik uygulandığında, triatlon performansını anlamlı şekilde artırmıştır. Bu etkinin büyük ölçüde egzersiz sonrası kalp atım hızındaki düşüşten kaynaklandığı düşünülmektedir. Ancak IPC’nin diğer HRV bileşenleri üzerindeki etkisi sınırlı kalmıştır.

Kaynakça

  • Bailey, T.G., Jones, H., Gregson, W., Atkinson, G., Cable, N.T., & Thijssen, D.H (2012). Effect of ischemic preconditioning on lactate accumulation and running performance. Medicine & Science in Sports & Exercise, 44(11), 2084-2089. https://doi.org/10.1249/mss.0b013e318262cb17
  • Barbosa TC, Machado AC, Braz ID, Fernandes IA, Vianna LC, Nobrega AC, Silva BM (2015). Remote ischemic preconditioning delays fatigue development during handgrip exercise. Scandinavian Journal of Medicine & Science in Sports, 25, 356–364. https://doi.org/10.1111/sms.12229
  • Brooks, G.A (2000). Intra-and extra-cellular lactate shuttles. Medicine and science in sports and exercise, 32(4), 790-799. https://doi.org/10.1097/00005768-200004000-00011
  • Carroll, R., & Yellon, D.M (1999). Myocardial adaptation to ischaemia–the preconditioning phenomenon. International Journal Of Cardiology, 68, S93-S101. https://doi.org/10.1016/S0167-5273(98)00297-6
  • Caru, M., Levesque, A., Lalonde, F., & Curnier, D. (2019). An overview of ischemic preconditioning in exercise performance: A systematic review. Journal of sport and health science, 8(4), 355-369. https://doi.org/10.1016/j.jshs.2019.01.008
  • Chaturvedi, R. R., Lincoln, C., Gothard, J. W., Scallan, M. H., White, P. A., Redington, A. N., & Shore, D. F. (1998). Left ventricular dysfunction after open repair of simple congenital heart defects in infants and children: quantitation with the use of a conductance catheter immediately after bypass. The Journal of Thoracic and Cardiovascular Surgery, 115(1), 77-83. https://doi.org/10.1016/S0022-5223(98)70446-5
  • Clevidence, M. W., Mowery, R. E., & Kushnick, M. R. (2012). The effects of ischemic preconditioning on aerobic and anaerobic variables associated with submaximal cycling performance. European Journal of Applied Physiology, 112, 3649-3654. https://doi.org/10.1007/s00421-012-2345-5
  • Cooper, C.E., & Brown, G.C (2008). The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. Journal of Bioenergetics and Biomembranes, 40(5), 533. https://doi.org/10.1007/s10863-008-9166-6
  • Cruz, R. S. D. O., De Aguiar, R. A., Turnes, T., Pereira, K. L., & Caputo, F. (2015). Effects of ischemic preconditioning on maximal constant-load cycling performance. Journal of Applied Physiology, 119(9), 961-967. https://doi.org/10.1152/japplphysiol.00498.2015
  • De Groot, P. C., Thijssen, D. H., Sanchez, M., Ellenkamp, R., & Hopman, M. T. (2010). Ischemic preconditioning improves maximal performance in humans. European journal of applied physiology, 108, 141-146. https://doi.org/10.1007/s00421-009-1195-2
  • Donato, M., Buchholz, B., Rodríguez, M., Pérez, V., Inserte, J., García‐Dorado, D., & Gelpi, R. J. (2013). Role of the parasympathetic nervous system in cardioprotection by remote hindlimb ischaemic preconditioning. Experimental Physiology, 98(2), 425-434. https://doi.org/10.1113/expphysiol.2012.066217
  • Gibson, N., White, J., Neish, M., & Murray, A. (2013). Effect of ischemic preconditioning on land-based sprinting in team-sport athletes. International Journal of Sports Physiology and Performance, 8(6), 671-676.
  • Giricz, Z., Varga, Z. V., Baranyai, T., Sipos, P., Pálóczi, K., Kittel, Á., ... & Ferdinandy, P. (2014). Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles. Journal of Molecular and Cellular Cardiology, 68, 75-78. https://doi.org/10.1016/j.yjmcc.2014.01.004
  • Hashimoto, T., & Brooks, G. A. (2008). Mitochondrial lactate oxidation complex and an adaptive role for lactate production. Medicine & Science in Sports & Exercise, 40(3), 486-494. https://doi.org/10.1249/mss.0b013e31815fcb04
  • Hausenloy, D.J., Yellon, D.M (2008). Remote ischaemic preconditioning: underlying mechanisms and clinical application. Cardiovascular Research, 79, 377–86. https://doi.org/10.1093/cvr/cvn114
  • Incognito, A. V., Burr, J. F., & Millar, P. J. (2016). The effects of ischemic preconditioning on human exercise performance. Sports Medicine, 46, 531-544. https://doi.org/10.1007/s40279-015-0433-5
  • Jean-St-Michel, E., Manlhiot, C., Li, J., Tropak, M., Michelsen, M. M., Schmidt, M. R., ... & Redington, A. N. (2011). Remote preconditioning improves maximal performance in highly trained athletes. Medicine and Science in Sports and Exercise, 43(7), 1280-1286.https://doi.org/10.1249/mss.0b013e318206845d
  • Kido, K., Suga, T., Tanaka, D., Honjo, T., Homma, T., Fujita, S., ... & Isaka, T. (2015). Ischemic preconditioning accelerates muscle deoxygenation dynamics and enhances exercise endurance during the work‐to‐work test. Physiological Reports, 3(5), e12395. https://doi.org/10.14814/phy2.12395
  • Kilduff, L. P., Finn, C. V., Baker, J. S., Cook, C. J., & West, D. J. (2013). Preconditioning strategies to enhance physical performance on the day of competition. International Journal of Sports Physiology and Performance, 8(6), 677-681.https://doi.org/10.1123/ijspp.8.6.677
  • Kimura, M., Ueda, K., Goto, C., Jitsuiki, D., Nishioka, K., Umemura, T., ... & Higashi, Y. (2007). Repetition of ischemic preconditioning augments endothelium-dependent vasodilation in humans: role of endothelium-derived nitric oxide and endothelial progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(6), 1403-1410. https://doi.org/10.1161/ATVBAHA.107.143578
  • Lalonde, F., & Curnier, D.Y (2015). Can anaerobic performance be improved by remote ischemic preconditioning. The Journal of Strength & Conditioning Research, 29(1), 80-85. https://doi.org/10.1519/JSC.0000000000000609
  • Lawson, C. S., & Downey, J. M. (1993). Preconditioning: state of the art myocardial protection. Cardiovascular Research, 27(4), 542-550. https://doi.org/10.1093/cvr/27.4.542
  • Loukogeorgakis, S. P., Panagiotidou, A. T., Broadhead, M. W., Donald, A., Deanfield, J. E., & MacAllister, R. J. (2005). Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans: Role of the autonomic nervous system. Journal of the American College of Cardiology, 46(3), 450-456. https://www.jacc.org/doi/abs/10.1016/j.jacc.2005.04.044
  • Marocolo, M., da Mota, G. R., Simim, M. A. M., & Coriolano, H. J. A. (2016). Myths and facts about the effects of ischemic preconditioning on performance. International Journal of Sports Medicine, 37(02), 87-96. https://doi.org/10.1055/s-0035-1564253
  • Murry, C. E., Jennings, R. B., & Reimer, K. A. (1986). Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation, 74(5), 1124-1136. https://doi.org/10.1161/01.CIR.74.5.1124
  • Ozkaya, Y. G., Agar, A., Hacioglu, G. Ö. K. Ç. E., Yargicoglu, P., Abidin, I., & Senturk, U. K. (2003). Training induced alterations of visual evoked potentials are not related to body temperature. International Journal of Sports Medicine, 24(05), 359-362. https://doi.org/10.1055/s-2003-40699
  • Pang, C. Y., Neligan, P., Xu, H., He, W., Zhong, A., Hopper, R., & Forrest, C. R. (1997). Role of ATP-sensitive K+ channels in ischemic preconditioning of skeletal muscle against infarction. American Journal of Physiology-Heart and Circulatory Physiology, 273(1), H44-H51.https://doi.org/10.1152/ajpheart.1997.273.1.H44
  • Pang, C. Y., Yang, R. Z., Zhong, A., Xu, N., Boyd, B., & Forrest, C. R. (1995). Acute ischaemic preconditioning protects against skeletal muscle infarction in the pig. Cardiovascular Research, 29(6), 782-788. https://doi.org/10.1016/S0008-6363(96)88613-5
  • Paradis-Deschênes, P., Joanisse, D. R., & Billaut, F. (2016). Ischemic preconditioning increases muscle perfusion, oxygen uptake, and force in strength-trained athletes. Applied Physiology, Nutrition, And Metabolism, 41(9), 938-944. https://doi.org/10.1139/apnm-2015-0561
  • Patel, H. H., Moore, J., Hsu, A. K., & Gross, G. J. (2002). Cardioprotection at a distance: mesenteric artery occlusion protects the myocardium via an opioid sensitive mechanism. Journal of Molecular and Cellular Cardiology, 34(10), 1317-1323. https://doi.org/10.1006/jmcc.2002.2072
  • Pell, T. J., Baxter, G. F., Yellon, D. M., & Drew, G. M. (1998). Renal ischemia preconditions myocardium: role of adenosine receptors and ATP-sensitive potassium channels. American Journal of Physiology-Heart and Circulatory Physiology, 275(5), H1542-H1547. https://doi.org/10.1152/ajpheart.1998.275.5.H1542
  • Peralta, C., Fernández, L., Panés, J., Prats, N., Sans, M., Piqué, J. M., ... & Roselló-Catafau, J. (2001). Preconditioning protects against systemic disorders associated with hepatic ischemia-reperfusion through blockade of tumor necrosis factor–induced P-selectin up-regulation in the rat. Hepatology, 33(1), 100-113. https://doi.org/10.1053/jhep.2001.20529
  • Przyklenk, K., & Whittaker, P. (2011). Remote ischemic preconditioning: current knowledge, unresolved questions, and future priorities. Journal of Cardiovascular Pharmacology and Therapeutics, 16, 255–9. https://doi.org/10.1177/1074248411409040
  • Riksen, N.P., Smits, P., & Rongen, G.A. (2006). Ischaemic preconditioning: From molecular characterisation to clinical application-part I. The Netherlands Journal of Medicine, 62(10), 353-63.
  • Schoemaker, R.G., & Van Heijningen, C.L. (2000). Bradykinin mediates cardiac preconditioning at a distance. Am American Journal of Physiology, 278, H1571–6. https://doi.org/10.1152/ajpheart.2000.278.5.H1571
  • Schulz, R., Cohen, M.V., Behrends, M., Downey, J.M., & Heusch, G. (2001). Signal transduction of ischemic preconditioning. Cardiovascular Research, 52(2), 181-198. https://doi.org/10.1016/S0008-6363(01)00384-4
  • Tocco, F., Marongiu, E., Ghiani, G., Sanna, I., Palazzolo, G., Olla, S., ... & Crisafulli, A. (2015). Muscle ischemic preconditioning does not improve performance during self-paced exercise. International Journal of Sports Medicine, 36(01), 9-15. https://doi.org/10.1055/s-0034-1384546
  • Veighey, K., & MacAllister, R. J. (2012). Clinical applications of remote ischemic preconditioning. Cardiology Research and Practice, 2012(1), 620681. https://doi.org/10.1155/2012/620681
  • Weinbrenner, C., Schulze, F., Sárváry, L., & Strasser, R. H. (2004). Remote preconditioning by infrarenal aortic occlusion is operative via δ1-opioid receptors and free radicals in vivo in the rat heart. Cardiovascular Research, 61(3), 591-599. https://doi.org/10.1016/j.cardiores.2003.10.008
  • Yellon, D. M., & Hausenloy, D. J. (2007). Myocardial reperfusion injury. New England Journal of Medicine, 357(11), 1121-1135. https://doi.org/10.1056/NEJMra071667
  • Ylitalo, K., & Peuhkurinen, K. (2001). Clinical relevance of ischemic preconditioning. Scandinavian Cardiovascular Journal, 35(6), 359-365. https://doi.org/10.1080/14017430152754835
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Beden Eğitimi ve Oyun, Egzersiz Fizyolojisi
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Zeki Sari 0000-0003-0606-4307

Buğra Gençtürk Bu kişi benim 0000-0002-1006-8450

Aliye Gündoğdu 0000-0003-3799-4056

Yaşar Gül Özkaya 0000-0002-4887-8379

Erken Görünüm Tarihi 26 Eylül 2025
Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 13 Haziran 2025
Kabul Tarihi 25 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 3

Kaynak Göster

APA Sari, M. Z., Gençtürk, B., Gündoğdu, A., Özkaya, Y. G. (2025). Acute and Chronic Lower Limb Ischaemic Preconditioning Increase the Sprint Triathlon Performance in Athletes. International Journal of Sport Exercise and Training Sciences - IJSETS, 11(3), 246-255. https://doi.org/10.18826/useeabd.1718989