Araştırma Makalesi
BibTex RIS Kaynak Göster

OCCUPATIONAL HEALTH AND SAFETY AS A DETERMINANT OF RESEARCH QUALITY: A BIBLIOMETRIC ANALYSIS OF APPLIED SCIENCES LABORATORIES

Yıl 2025, Cilt: 9 Sayı: 2, 223 - 237, 26.12.2025
https://doi.org/10.62301/usmtd.1780181

Öz

This study investigates the potential relationship between occupational health and safety (OHS) standards in academic laboratories and the quality of scientific research output. Using a dataset of 102 peer-reviewed publications extracted from the Scopus database between 1987 and 2025, this study conducted a bibliometric analysis to explore trends, thematic patterns, institutional contributions, and citation impacts in the context of applied sciences. Rather than analyzing OHS as a research topic, this paper adopts a structural perspective: considering how the presence or absence of OHS practices may influence research productivity, visibility, and overall impact. The results reveal a concentration of high-impact publications originating from institutions in countries with mature safety regulations and well-established research infrastructures. The study concludes by framing OHS not just as a regulatory concern but as a potentially overlooked driver of academic excellence, urging further integration of safety culture into research evaluation frameworks.

Kaynakça

  • International Labour Organization, Occupational Safety and Health: Fundamental Principles and Rights at Work, ILO, 2023.
  • Centers for Disease Control and Prevention, Biosafety in Microbiological and Biomedical Laboratories (BMBL), sixth ed., CDC, 2020.
  • M.P. Doyle, Laboratory Safety for Chemistry Students, Wiley, 2002.
  • M. Wadud, S. Rahman, M.R. Kabir, PPE usage trends among professionals in academic research settings: Post-COVID-19 analysis, Saf. Sci. 145 (2022) 105506.
  • L. Bornmann, H.D. Daniel, What do citation counts measure? A review of studies on citing behavior, J. Doc. 64 (1) (2008) 45–80.
  • National Institutes of Health, Guidelines for Laboratory Safety, NIH, 2018.
  • M. Tomasini, M. Moretti, M. Martini, Students’ awareness of safety procedures in university science laboratories: A cross-sectional study, Int. J. Environ. Res. Public Health 16 (19) (2019) 3693.
  • Organisation for Economic Co-operation and Development, University Research and Innovation Ecosystems, OECD, 2019.
  • J. Takala, P. Hämäläinen, K.L. Saarela, L.Y. Yun, K. Manickam, T.W. Jin, G.S. Lin, Global estimates of the burden of injury and illness at work in 2012, J. Occup. Environ. Hyg. 11 (5) (2014) 326–337.
  • P.T. Patten, Engineering, the Developing Career—A Personal View, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 205 (2) (1991) 65–74. doi: 10.1243/PIME_PROC_1991_205_202_02
  • H. Liu, Teaching pharmaceutical process safety and environmental protection: A case study from Wuhan Institute of Technology, Educ. Chem. Eng. 51 (2025) 103–109. doi: 10.1016/j.ece.2025.02.006
  • E. Santner, Laboratories at work: Tribology at BAM, Berlin, Tribotest 1 (1) (1994) 77–89. doi: 10.1002/tt.3020010106
  • N.J. Raufaste, NIST's BFRL, Mil. Eng. 85 (557) (1993) 43–45.
  • V. Kant, Nanotechnology and HFE: critically engaging human capital in small-scale robotics research, Cogn. Technol. Work 19 (2017) 419–444. doi: 10.1007/s10111-017-0414-6
  • C.I. Nitsche, Promoting safety culture: An overview of collaborative chemical safety information initiatives, J. Chem. Health Saf. 26 (3) (2019) 27–30. doi: 10.1016/j.jchas.2018.12.004
  • K.P. Fivizzani, Where are we with lab safety education: Who, what, when, where, and how?, J. Chem. Health Saf. 23 (5) (2016) 18–20. doi: 10.1016/j.jchas.2015.11.001
  • K.P. Fivizzani, Chemical health and safety as a professional career, Chem. Health Saf. 6 (6) (1999) 5–7. doi: 10.1016/S1074-9098(99)00049-0
  • B. Türk, Important Factors Affecting the Quality of Indoor Air and a Bibliometric Analysis, Sakarya Univ. J. Sci. 26 (3) (2022) 608–619. doi: 10.16984/saufenbilder.996443
  • R.H. Hill, Building Strong Cultures with Chemical Safety Education, J. Chem. Educ. 98 (1) (2021) 113–117. doi: 10.1021/acs.jchemed.0c00089
  • S. Sigmann, Chemical safety education for the 21st century — Fostering safety information competency in chemists, J. Chem. Health Saf. 25 (3) (2018) 17–29. doi: 10.1016/j.jchas.2017.11.002
  • J. Zakzeski, Improving engineering research laboratory safety by addressing the human aspects of research management, J. Chem. Health Saf. 16 (3) (2009) 5–20.
  • R.C. Klein, Research laboratory wastewater neutralization systems, J. Chem. Health Saf. 13 (2) (2006) 15–18.
  • D.J. Leggett, Lab-HIRA: Hazard identification and risk analysis for the chemical research laboratory. Part 2. Risk analysis of laboratory operations, J. Chem. Health Saf. 19 (5) (2012) 25–36.
  • B.N. Pritchard, Industrial chimneys: A review of the current state of the art, Proc. Inst. Civ. Eng. Struct. Build. 116 (1) (1996) 69–81.
  • C.O. Smith, Year-long sequence in product design, Int. J. Appl. Eng. Educ. 5 (4) (1989) 441–444.
  • C. Sheppard, Integration of Laboratory Safety and Green Chemistry: Implementation in a Sophomore Seminar and an Advanced Organic Laboratory, J. Chem. Educ. 98 (1) (2021) 78–83.
  • K.L. Miller, Operational health physics, Health Phys. 88 (1) (2005) 638–652
  • A.S. Mujumdar, Research and development in drying: Recent trends and future prospects, Drying Technol. 22 (2004) 1–26.
  • H.P. Maharaj, Safety considerations and recommendations for analytical x-ray devices from a review of survey data, Health Phys. 66 (4) (1994) 463–471.
  • J.K. Butler, The cardinal rule of explosives safety, J. Chem. Health Saf. 21 (3) (2014) 16–21.
  • P.L. Urban, Quantitative mass spectrometry: An overview, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374 (2079) (2016).
  • G. Ladds, A brave new Europe with the introduction of the EU Clinical Trials Directive: Impact upon the pharma industry and academic research with special emphasis on pharmacovigilance, J. Commer. Biotechnol. 11 (1) (2004) 44–53.
  • V. Kant, Revisiting the technologies of the old: a case study of cognitive work analysis and nanomaterials, Cogn. Technol. Work 19 (1) (2017) 47–71.
  • R.W. Eck, Center for excellence in construction safety, J. Perform. Constr. Facil. 1 (3) (1987) 122–131.
  • S.R. Hatcher, Canada’s nuclear R&D for the future, Kema Sci. Tech. Rep. 6 (11) (1988) 333–338.
  • K. Fukuoka, M. Furusho, A new approach for explosion accident prevention in chemical research laboratories at universities, Sci. Rep. 12 (1) (2022).
  • A.M. Fracaroli, D.A. Caminos, Fostering a Chemistry Safety Culture despite Limited Resources: A Successful Example from Academic Research Laboratories in Argentina, J. Chem. Educ. 98 (1) (2021) 125–133.
  • K. Cornetta, F.O. Smith, Regulatory issues for clinical gene therapy trials, Hum. Gene Ther. 13 (10) (2002) 1143–1149.
  • O. Cazzuli, E. Giroletti, Laboratory UV exposure: Risk assessment and protective measures, Photochem. Photobiol. 80 (3) (2004) 548–553.
  • R.B. Stuart, L.R. McEwen, The Safety “use Case”: Co-Developing Chemical Information Management and Laboratory Safety Skills, J. Chem. Educ. 93 (3) (2016) 516–526.
  • S.J. Lehotay, Y. Chen, Hits and misses in research trends to monitor contaminants in foods, Anal. Bioanal. Chem. 410 (22) (2018) 5331–5351.
  • J.-S. Völler, N. Budisa, Coupling genetic code expansion and metabolic engineering for synthetic cells, Curr. Opin. Biotechnol. 48 (2017) 1–7.
  • V. Kant, C.M. Burns, Engaging nanotechnology: ethnography of lab-on-a-chip technology in small-scale fluidics research, Cogn. Technol. Work 18 (1) (2016) 33–52.
  • D.J. Goldfeld, J.H. Schott, Extracurricular Student Groups: The Final Frontier of Undergraduate Safety, J. Chem. Educ. 98 (1) (2021) 15–18.
  • A.D. Ménard, J.F. Trant, A review and critique of academic lab safety research, Nat. Chem. 12 (1) (2020) 17–25.
  • J. Cresswell, D. Goulson, In response: Current evidence and implications—An academic perspective, Environ. Toxicol. Chem. 34 (7) (2015) 1454–1456.
  • T. Olewski, M. Snakard, Challenges in applying process safety management at university laboratories, J. Loss Prev. Process Ind. 49 (2017) 209–214.
  • M. Schüngel, E. Stackebrandt, Microbial Resource Research Infrastructure (MIRRI): Infrastructure to foster academic research and biotechnological innovation, Biotechnol. J. 10 (1) (2015) 17–19.
  • M. Seifan, N. Robertson, A. Berenjian, Use of virtual learning to increase key laboratory skills and essential non-cognitive characteristics, Educ. Chem. Eng. 33 (2020) 66–75.
  • C. Zhang, J. Zhang, G. Wang, Current safety practices in nano-research laboratories in China, J. Nanosci. Nanotechnol. 14 (6) (2014) 4700–4705.
  • L.L. Mugivhisa, K. Baloyi, J. Oluwole Olowoyo, Adherence to safety practices and risks associated with toxic chemicals in the research and postgraduate laboratories at Sefako Makgatho Health Sciences University, Pretoria, South Africa, Afr. J. Sci. Technol. Innov. Dev. 13 (6) (2021) 747–756.
  • J.H. Gibson, I. Schröder, N.L. Wayne, A research university’s rapid response to a fatal chemistry accident: Safety changes and outcomes, J. Chem. Health Saf. 21 (4) (2014) 18–26.
  • C.P. McGeough, S.J. Mear, T.F. Jamison, A Call for Increased Focus on Reproductive Health within Lab Safety Culture, J. Am. Chem. Soc. 143 (32) (2021) 12422–12427.
  • C.K.I. Che Ibrahim, S. Belayutham, M.Z. Mohammad, Prevention through Design (PtD) Education for Future Civil Engineers in Malaysia: Current State, Challenges, and Way Forward, J. Civ. Eng. Educ. 147 (1) (2021).
  • D.R. Simmons, A.D. Chau, M. Turner, Validating Resilience at University Scale with Future Civil Engineering and Construction Professionals, J. Manag. Eng. 38 (5) (2022).
  • L. Roloff, M.G.T.C. Ribeiro, F.J. Anaissi, Analysis of substances involved in the synthesis of metallic complexes in the laboratory context of courses in chemistry in Brazil, Rev. Virtual Quim. 15 (4) (2023) 816–826.
  • F. Sherratt, P. Farrell, R. Noble, UK construction site safety: discourses of enforcement and engagement, Constr. Manag. Econ. 31 (6) (2013) 623–635.
  • M. Gunasekera, F. Khan, S. Ahmed, Learning process safety principles through practice, Process Saf. Prog. 37 (3) (2018) 347–354.
  • R. Baudille, M.E. Biancolini, C. Ponzo, University team TVK: The right formula to win, AutoTechnology 5 (2005) 48–50.
  • F. Silva, P. Arezes, P. Swuste, Risk assessment in a research laboratory during sol-gel synthesis of nano-TiO2, Saf. Sci. 80 (2015) 201–212.
  • A.K. Petersen, J.H. Reynolds, L.W.T. Ng, The attitude of civil engineering students towards health and safety risk management: A case study, Eur. J. Eng. Educ. 33 (2008) 499–510.
  • N.N. Shaw, S.B. Sigmann, L.B. Richard, The Research Storyboard: Ideas for Cultivating Safe, Engaged, and Empowered Undergraduate Research Students, J. Chem. Educ. 98 (1) (2021) 167–174.
  • T.A. Van Barneveld, A.J. Sasco, F.E. Van Leeuwen, A cohort study of cancer mortality among biology research laboratory workers in The Netherlands, Cancer Causes Control 15 (1) (2004) 55–66.
  • J.A. Martin, K.A. Miller, E. Pinkhassik, Starting and Sustaining a Laboratory Safety Team (LST), ACS Chem. Health Saf. 27 (3) (2020) 170–182.
  • N. Nasirzadeh, F. Golbabaei, S. Omari Shekaftik, Laboratory activities involving nanomaterials: risk assessment and investigating researchers’ symptoms, Nanoscale 15 (6) (2022) 2674–2689.
  • N. Nehal, B. Choudhary, A. Nagpure, R.K. Gupta, DNA barcoding: a modern age tool for detection of adulteration in food, Crit. Rev. Biotechnol. 41 (5) (2021) 767–791.
  • N.D. Dholakiya, M. Ferjencik, D. Schofield, J. Kubík, Virtual learning for safety, why not a smartphone?, Process Saf. Prog. 38 (2) (2019).
  • D. Gillum, I.A. Mendoza, R.R. Caruso, J. Marmo, The value of biosafety professionals, Appl. Biosaf. 19 (2) (2014) 87–97.
  • J. Krenz, N. Simcox, J. Stoddard Tepe, C.D. Simpson, Transitioning to safer chemicals in academic research laboratories: Lessons learned at the University of Washington, ACS Sustain. Chem. Eng. 4 (7) (2016) 4021–4028.
  • A.S. Cannon, D. Finster, D. Raynie, J.C. Warner, Models for integrating toxicology concepts into chemistry courses and programs, Green Chem. Lett. Rev. 10 (4) (2017) 436–443.
  • Z.-M. Li, X.-G. Cheng, L. Wu, Y.-F. Wei, Fault diagnosis method for wireless security monitoring system in chemistry and chemical engineering laboratory, Beijing Ligong Daxue Xuebao/Trans. Beijing Inst. Technol. 35 (2015).Klein R.C. (2006). Research laboratory wastewater neutralization systems. Journal of Chemical Health and Safety, 13(2), 15-18. Doi: 10.1016/j.chs.2005.02.004
  • H. Housni, K. Bendahhou, M. Tahiri, N. Tahiri Jouti, Compliance Assessment of Scientific Research Laboratories with Legal Requirements Regarding the Integrated Management of Chemicals and Hazardous Waste, Chem. Afr. 5 (4) (2022) 1167–1189.
  • J.R.I. Laxamana, D.M.K.T. Reyes, R.L. Santos, C.E.M. Paraoan, Temporal Variation and Phylogeny of Air and Surface Microflora in Relation to Occupancy Patterns in a Higher Education Institution, Philipp. J. Sci. 153 (3) (2024) 915–921.
  • A.M. Brown, J. Blind, K. Campbell, S. Ghosh, Safeguards for Using Viral Vector Systems in Human Gene Therapy: A Resource for Biosafety Professionals Mitigating Risks in Health Care Settings, Appl. Biosaf. 25 (4) (2020) 184–193.
  • A.M. Novello, E. Buitrago, A. Groso, T. Meyer, Efficient management of nanomaterial hazards in a large number of research laboratories in an academic environment, Saf. Sci. 121 (2020) 158–164.
  • M.P. Tracey, M. Nigam, E. Pirzada, T. Osman, A solventless carbonyl addition reaction as a guided inquiry laboratory activity for second-year undergraduate organic students, Green Chem. Lett. Rev. 17 (1) (2024).
  • A.D. Ménard, E. Flynn, K. Soucie, J.F. Trant, Accident Experiences and Reporting Practices in Canadian Chemistry and Biochemistry Laboratories: A Pilot Investigation, ACS Chem. Health Saf. 29 (1) (2022) 102–109.
  • B. Hughes, D.J. Edwards, I. Martek, N. Chileshe, W.D. Thwala, Assessing the “clerk of works” role in delivering quality affordable housing: a UK case study, Smart Sustain. Built Environ. 11 (4) (2022) 996–1016.
  • J. Verastegui, V. Martínez, W. Roca, M. De Peña, L. Gil, The multinational biosafety project of the Organization of American States, Electron. J. Biotechnol. 7 (1) (2004) 54–61.
  • A. Groso, A. Petri-Fink, B. Rothen-Rutishauser, H. Hofmann, T. Meyer, Engineered nanomaterials: Toward effective safety management in research laboratories, J. Nanobiotechnol. 14 (1) (2016).
  • D. Naglav, M.R. Buchner, G. Bendt, F. Kraus, S. Schulz, Off the Beaten Track—A Hitchhiker’s Guide to Beryllium Chemistry, Angew. Chem. Int. Ed. 55 (36) (2016) 10562–10576.
  • L.A. Holland, J.S. Carver, L.M. Veltri, R.J. Henderson, K.D. Quedado, Enhancing research for undergraduates through a nanotechnology training program that utilizes analytical and bioanalytical tools, Anal. Bioanal. Chem. 410 (24) (2018) 6041–6050.
  • N. Verity, B. Ulm, K. Pham, B. Evangelista, R. Borgon, Demonstrating core molecular biology principles using GST-GFP in a semester-long laboratory course, Biochem. Mol. Biol. Educ. 50 (1) (2022) 55–64.
  • S. Paz, C. Mauer, A. Ritchie, J.D. Robishaw, M. Caputi, A simplified SARS-CoV-2 detection protocol for research laboratories, PLoS One 15 (2020).
  • T. Kobayashi, Y. Sakurai, K. Kanda, Y. Fujita, K. Ono, Remodeling and basic characteristics of the heavy water neutron irradiation facility of the Kyoto University Research Reactor, mainly for neutron capture therapy, Nucl. Technol. 131 (3) (2000) 354–378.
  • Y. Kou, X. Peng, C.E. Dingwell, S.A. Reisbick, I.A. Tonks, A.A. Sitek, Learning Experience Reports Improve Academic Research Safety, J. Chem. Educ. 98 (1) (2021) 150–157.
  • J. Zhang, S. Peng, P. Wang, F. Zhang, Q. Wang, Z. Dou, Reconstruction of Curriculum System for Chemical Safety Undergraduate Education under Emerging Engineering Education Requirements, ACS Chem. Health Saf. 31 (5) (2024) 378–392.
  • D.-G. Yu, Q. Li, W. Song, L. Xu, K. Zhang, T. Zhou, Advanced Technique-Based Combination of Innovation Education and Safety Education in Higher Education, J. Chem. Educ. 100 (2) (2023) 507–516.
  • A.Y. Zhao, N.E. DeSousa, H.C. Henriksen, A.M. May, X. Tan, D.S. Lawrence, An Assessment of Laboratory Safety Training in Undergraduate Education, J. Chem. Educ. 101 (4) (2024) 1626–1634.
  • K. Palanikumar, E. Natarajan, S. Suresh, D.G. Mohan, C. Prakash, K. Kaur, Prospects of friction stir processed Mg alloys and composites—Reviews and suggestions, J. Mater. Res. Technol. 31 (2024) 971–997.
  • S. Omari Shekaftik, R. Yarahmadi, N. Moghadasi, Z. Sedghi Noushabadi, A.F. Hosseini, A. Ashtarinezhad, Investigation of recommended good practices to reduce exposure to nanomaterials in nanotechnology laboratories in Tehran, Iran, J. Nanopart. Res. 22 (3) (2020).
  • Q.-Y. Sun, X.-J. Liu, Y.-M. Sun, M.-C. Wang, X. Han, X.-G. Chen, A Security Wireless Monitoring and Automatic Protection System for CCEL, Wirel. Commun. Mob. Comput. 2021 (2021).
  • S.R. Zinn, B.R. Slaw, J.H. Lettow, R.J. Menssen, J.H. Wright, K. Mormann, J.M. Ting, Lessons Learned from the Creation and Development of a Researcher-Led Safety Organization at the University of Chicago, ACS Chem. Health Saf. 27 (2) (2020) 114–124.
  • R. Nakacwa, A. Kiggundu, H. Talwana, J. Namaganda, C. Lilley, W. Tushemereirwe, H. Atkinson, Nematode 18S rRNA gene is a reliable tool for environmental biosafety assessment of transgenic banana in confined field trials, Transgenic Res. 22 (5) (2013) 1003–1010.
  • B.R. Bhattarai, B.P. Regmi, A. Gupta, B. Aryal, B. Adhikari, M. Paudel, N. Parajuli, Importance of advanced analytical techniques and methods for food quality control and pollution analysis for more sustainable future in the least developed countries, Sustain. Chem. Pharm. 27 (2022).
  • C.B. Plescia, E.A. David, D. Patra, R. Sengupta, S. Amiar, Y. Su, R.V. Stahelin, SARS-CoV-2 viral budding and entry can be modeled using BSL-2 level virus-like particles, J. Biol. Chem. 296 (2021).
  • J.R.A. Schmidt, D.J. Nogueira, S.M. Nassar, V.P. Vaz, M.L.N. da Silva, D.S. Vicentini, W.G. Matias, Probabilistic model for assessing occupational risk during the handling of nanomaterials, Nanotoxicology 14 (9) (2020) 1258–1270.
  • I.O. Staehle, T.S. Chung, A. Stopin, G.S. Vadehra, S.I. Hsieh, J.H. Gibson, M.A. Garcia-Garibay, An Approach to Enhance the Safety Culture of an Academic Chemistry Research Laboratory by Addressing Behavioral Factors, J. Chem. Educ. 93 (2) (2016) 217–222.
  • P. Mocellin, J. De Tommaso, C. Vianello, G. Maschio, T. Saulnier-Bellemare, L.D. Virla, G.S. Patience, Experimental methods in chemical engineering: Hazard and operability analysis—HAZOP, Can. J. Chem. Eng. 100 (12) (2022) 3450–3469.
  • B.D. Backus, K. Fivizzani, T. Goodwin, D. Finster, E. Austin, W. Doub, S.D. Wiediger, S. Kinsley, Laboratory safety culture: Summary of the chemical education research and practice – Safety in chemistry education panel discussion, J. Chem. Health Saf. 19 (4) (2012) 20–24.
  • C.I. Kong, J.G. Welfare, H. Shenouda, O.R. Sanchez-Felix, J.B. Floyd Jr., R.C. Hubal, J.S. Heneghan, D.S. Lawrence, Virtually Bridging the Safety Gap between the Lecture Hall and the Research Laboratory, J. Chem. Educ. 99 (5) (2022) 1982–1989.
  • Z.A. Syed, Z. Trabookis, J.W. Bertrand, K.C. Madathil, R.S. Hartley, K.K. Frady, J.R. Wagner, A.K. Gramopadhye, Evaluation of virtual reality based learning materials as a supplement to the undergraduate mechanical engineering laboratory experience, Int. J. Eng. Educ. 35 (3) (2019) 842–852.
  • M. Motalifu, Y. Tian, Y. Liu, D. Zhao, M. Bai, Y. Kan, M. Qi, G. Reniers, N. Roy, Chemical process safety education in China: An overview and the way forward, Saf. Sci. 148 (2022).
  • B. Krsmanovic, R. Weissbrodt, F. Bürki, C.-A. Fournier, D. Glassey-Previdoli, S. Imboden, L. Pillet, M. Repetti, A. Santos Mella, Developing good practices and organisational resilience during the COVID-19 pandemic: A retrospective qualitative case study in a higher education institution, Saf. Sci. 178 (2024).
  • M. Collins, M.B. Lau, W. Ma, A. Shen, B. Wang, S. Cai, M. La Russa, M.C. Jewett, L.S. Qi, A frugal CRISPR kit for equitable and accessible education in gene editing and synthetic biology, Nat. Commun. 15 (1) (2024).
  • M.F. Fleury Rosa, L.M.P. Santos, C.A. Grabois Gadelha, A. Martins de Toledo, R.L. Carregaro, A.K. Almeida da Silva, L.B. Mota da Costa, A. Ferreira da Rocha, S. de Siqueira Rodrigues Fleury Rosa, Translational pathway of a novel PFF2 respirator with chitosan nanotechnology: from the concept to the practical applications, Front. Nanotechnol. 6 (2024).
  • L.M. Frost, A.M. Mendoza, T.-T. Chiou, P. Kim, J. Aizenberg, D.B. Kohn, S.N. De Oliveira, P.S. Weiss, S.J. Jonas, Fluorinated Silane-Modified Filtroporation Devices Enable Gene Knockout in Human Hematopoietic Stem and Progenitor Cells, ACS Appl. Mater. Interfaces 15 (35) (2023) 41299–41309.
  • F. Boccuni, R. Ferrante, F. Tombolini, D. Lega, A. Antonini, A. Alvino, P. Pingue, F. Beltram, L. Sorba, V. Piazza, M. Gemmi, A. Porcari, S. Iavicoli, Workers’ exposure to nano-objects with different dimensionalities in R&D laboratories: Measurement strategy and field studies, Int. J. Mol. Sci. 19 (2) (2018).
  • C.J. Caruana, M. Wasilewska-Radwanska, A. Aurengo, P.P. Dendy, V. Karenauskaite, M.R. Malisan, J.H. Meijer, D. Mihov, V. Mornstein, E. Rokita, E. Vano, M. Weckstrom, M. Wucherer, A comprehensive SWOT audit of the role of the biomedical physicist in the education of healthcare professionals in Europe, Phys. Medica 26 (2) (2010) 98–110.
  • C.M. Straut Langlinais, Z.R. Skeete, J.D.A. Ng, A. Elgersma, F. Elabbar, N. Bader, A.O. Abdalla, L. Navratilova, H. Ben Romdhane, H.L. Lee, D.I. Tofiq, D.I. Saleh, M. Abdoarrahem, Proceedings of the 2024 Advancing Chemical Safety and Security Education Symposium at the 27th IUPAC International Conference on Chemistry Education, ACS Chem. Health Saf. 32 (1) (2025) 5–15.
  • P. Brauner, M. Dalibor, M. Jarke, I. Kunze, I. Koren, G. Lakemeyer, M. Liebenberg, J. Michael, J. Pennekamp, C. Quix, B. Rumpe, W. Van Der Aalst, K. Wehrle, A. Wortmann, M. Ziefle, A Computer Science Perspective on Digital Transformation in Production, ACM Trans. Internet Things 3 (2) (2022).
  • Lloyd’s Register Foundation, World Risk Poll 2024 – Occupational Safety and Health (OSH) Report, Institute for Economics and Peace, 2024.
  • Institute for Economics and Peace, Safety Perceptions Index 2023: Understanding the impact of risk around the world, Lloyd’s Register Foundation, 2023.

ARAŞTIRMA KALİTESİNİN BELİRLEYİCİSİ OLARAK İŞ SAĞLIĞI VE GÜVENLİĞİ: UYGULAMALI BİLİMLER LABORATUVARLARINDA BİBLİYOMETRİK BİR ANALİZ

Yıl 2025, Cilt: 9 Sayı: 2, 223 - 237, 26.12.2025
https://doi.org/10.62301/usmtd.1780181

Öz

Bu çalışma, akademik laboratuvarlardaki iş sağlığı ve güvenliği (İSG) standartları ile bilimsel araştırma çıktılarının kalitesi arasındaki potansiyel ilişkiyi incelemektedir. 1987 ile 2025 yılları arasında Scopus veritabanından elde edilen 102 hakemli yayına dayalı olarak, uygulamalı bilimler bağlamında eğilimleri, tematik örüntüleri, kurumsal katkıları ve atıf etkilerini incelemek üzere bibliyometrik bir analiz gerçekleştirilmiştir. Bu makale, İSG’yi bir araştırma konusu olarak analiz etmekten ziyade, yapısal bir bakış açısı benimseyerek, İSG uygulamalarının varlığının ya da yokluğunun araştırma verimliliğini, görünürlüğünü ve etkisini nasıl etkileyebileceğini değerlendirmektedir. Sonuçlar, yüksek etkili yayınların büyük ölçüde gelişmiş güvenlik düzenlemelerine ve köklü araştırma altyapılarına sahip ülkelerdeki kurumlardan çıktığını ortaya koymaktadır. Çalışma, İSG’yi yalnızca bir düzenleme meselesi olarak değil, akademik mükemmeliyetin potansiyel olarak göz ardı edilmiş bir itici gücü olarak çerçeveleyerek, güvenlik kültürünün araştırma değerlendirme sistemlerine daha fazla entegre edilmesi çağrısında bulunmaktadır.

Kaynakça

  • International Labour Organization, Occupational Safety and Health: Fundamental Principles and Rights at Work, ILO, 2023.
  • Centers for Disease Control and Prevention, Biosafety in Microbiological and Biomedical Laboratories (BMBL), sixth ed., CDC, 2020.
  • M.P. Doyle, Laboratory Safety for Chemistry Students, Wiley, 2002.
  • M. Wadud, S. Rahman, M.R. Kabir, PPE usage trends among professionals in academic research settings: Post-COVID-19 analysis, Saf. Sci. 145 (2022) 105506.
  • L. Bornmann, H.D. Daniel, What do citation counts measure? A review of studies on citing behavior, J. Doc. 64 (1) (2008) 45–80.
  • National Institutes of Health, Guidelines for Laboratory Safety, NIH, 2018.
  • M. Tomasini, M. Moretti, M. Martini, Students’ awareness of safety procedures in university science laboratories: A cross-sectional study, Int. J. Environ. Res. Public Health 16 (19) (2019) 3693.
  • Organisation for Economic Co-operation and Development, University Research and Innovation Ecosystems, OECD, 2019.
  • J. Takala, P. Hämäläinen, K.L. Saarela, L.Y. Yun, K. Manickam, T.W. Jin, G.S. Lin, Global estimates of the burden of injury and illness at work in 2012, J. Occup. Environ. Hyg. 11 (5) (2014) 326–337.
  • P.T. Patten, Engineering, the Developing Career—A Personal View, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 205 (2) (1991) 65–74. doi: 10.1243/PIME_PROC_1991_205_202_02
  • H. Liu, Teaching pharmaceutical process safety and environmental protection: A case study from Wuhan Institute of Technology, Educ. Chem. Eng. 51 (2025) 103–109. doi: 10.1016/j.ece.2025.02.006
  • E. Santner, Laboratories at work: Tribology at BAM, Berlin, Tribotest 1 (1) (1994) 77–89. doi: 10.1002/tt.3020010106
  • N.J. Raufaste, NIST's BFRL, Mil. Eng. 85 (557) (1993) 43–45.
  • V. Kant, Nanotechnology and HFE: critically engaging human capital in small-scale robotics research, Cogn. Technol. Work 19 (2017) 419–444. doi: 10.1007/s10111-017-0414-6
  • C.I. Nitsche, Promoting safety culture: An overview of collaborative chemical safety information initiatives, J. Chem. Health Saf. 26 (3) (2019) 27–30. doi: 10.1016/j.jchas.2018.12.004
  • K.P. Fivizzani, Where are we with lab safety education: Who, what, when, where, and how?, J. Chem. Health Saf. 23 (5) (2016) 18–20. doi: 10.1016/j.jchas.2015.11.001
  • K.P. Fivizzani, Chemical health and safety as a professional career, Chem. Health Saf. 6 (6) (1999) 5–7. doi: 10.1016/S1074-9098(99)00049-0
  • B. Türk, Important Factors Affecting the Quality of Indoor Air and a Bibliometric Analysis, Sakarya Univ. J. Sci. 26 (3) (2022) 608–619. doi: 10.16984/saufenbilder.996443
  • R.H. Hill, Building Strong Cultures with Chemical Safety Education, J. Chem. Educ. 98 (1) (2021) 113–117. doi: 10.1021/acs.jchemed.0c00089
  • S. Sigmann, Chemical safety education for the 21st century — Fostering safety information competency in chemists, J. Chem. Health Saf. 25 (3) (2018) 17–29. doi: 10.1016/j.jchas.2017.11.002
  • J. Zakzeski, Improving engineering research laboratory safety by addressing the human aspects of research management, J. Chem. Health Saf. 16 (3) (2009) 5–20.
  • R.C. Klein, Research laboratory wastewater neutralization systems, J. Chem. Health Saf. 13 (2) (2006) 15–18.
  • D.J. Leggett, Lab-HIRA: Hazard identification and risk analysis for the chemical research laboratory. Part 2. Risk analysis of laboratory operations, J. Chem. Health Saf. 19 (5) (2012) 25–36.
  • B.N. Pritchard, Industrial chimneys: A review of the current state of the art, Proc. Inst. Civ. Eng. Struct. Build. 116 (1) (1996) 69–81.
  • C.O. Smith, Year-long sequence in product design, Int. J. Appl. Eng. Educ. 5 (4) (1989) 441–444.
  • C. Sheppard, Integration of Laboratory Safety and Green Chemistry: Implementation in a Sophomore Seminar and an Advanced Organic Laboratory, J. Chem. Educ. 98 (1) (2021) 78–83.
  • K.L. Miller, Operational health physics, Health Phys. 88 (1) (2005) 638–652
  • A.S. Mujumdar, Research and development in drying: Recent trends and future prospects, Drying Technol. 22 (2004) 1–26.
  • H.P. Maharaj, Safety considerations and recommendations for analytical x-ray devices from a review of survey data, Health Phys. 66 (4) (1994) 463–471.
  • J.K. Butler, The cardinal rule of explosives safety, J. Chem. Health Saf. 21 (3) (2014) 16–21.
  • P.L. Urban, Quantitative mass spectrometry: An overview, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374 (2079) (2016).
  • G. Ladds, A brave new Europe with the introduction of the EU Clinical Trials Directive: Impact upon the pharma industry and academic research with special emphasis on pharmacovigilance, J. Commer. Biotechnol. 11 (1) (2004) 44–53.
  • V. Kant, Revisiting the technologies of the old: a case study of cognitive work analysis and nanomaterials, Cogn. Technol. Work 19 (1) (2017) 47–71.
  • R.W. Eck, Center for excellence in construction safety, J. Perform. Constr. Facil. 1 (3) (1987) 122–131.
  • S.R. Hatcher, Canada’s nuclear R&D for the future, Kema Sci. Tech. Rep. 6 (11) (1988) 333–338.
  • K. Fukuoka, M. Furusho, A new approach for explosion accident prevention in chemical research laboratories at universities, Sci. Rep. 12 (1) (2022).
  • A.M. Fracaroli, D.A. Caminos, Fostering a Chemistry Safety Culture despite Limited Resources: A Successful Example from Academic Research Laboratories in Argentina, J. Chem. Educ. 98 (1) (2021) 125–133.
  • K. Cornetta, F.O. Smith, Regulatory issues for clinical gene therapy trials, Hum. Gene Ther. 13 (10) (2002) 1143–1149.
  • O. Cazzuli, E. Giroletti, Laboratory UV exposure: Risk assessment and protective measures, Photochem. Photobiol. 80 (3) (2004) 548–553.
  • R.B. Stuart, L.R. McEwen, The Safety “use Case”: Co-Developing Chemical Information Management and Laboratory Safety Skills, J. Chem. Educ. 93 (3) (2016) 516–526.
  • S.J. Lehotay, Y. Chen, Hits and misses in research trends to monitor contaminants in foods, Anal. Bioanal. Chem. 410 (22) (2018) 5331–5351.
  • J.-S. Völler, N. Budisa, Coupling genetic code expansion and metabolic engineering for synthetic cells, Curr. Opin. Biotechnol. 48 (2017) 1–7.
  • V. Kant, C.M. Burns, Engaging nanotechnology: ethnography of lab-on-a-chip technology in small-scale fluidics research, Cogn. Technol. Work 18 (1) (2016) 33–52.
  • D.J. Goldfeld, J.H. Schott, Extracurricular Student Groups: The Final Frontier of Undergraduate Safety, J. Chem. Educ. 98 (1) (2021) 15–18.
  • A.D. Ménard, J.F. Trant, A review and critique of academic lab safety research, Nat. Chem. 12 (1) (2020) 17–25.
  • J. Cresswell, D. Goulson, In response: Current evidence and implications—An academic perspective, Environ. Toxicol. Chem. 34 (7) (2015) 1454–1456.
  • T. Olewski, M. Snakard, Challenges in applying process safety management at university laboratories, J. Loss Prev. Process Ind. 49 (2017) 209–214.
  • M. Schüngel, E. Stackebrandt, Microbial Resource Research Infrastructure (MIRRI): Infrastructure to foster academic research and biotechnological innovation, Biotechnol. J. 10 (1) (2015) 17–19.
  • M. Seifan, N. Robertson, A. Berenjian, Use of virtual learning to increase key laboratory skills and essential non-cognitive characteristics, Educ. Chem. Eng. 33 (2020) 66–75.
  • C. Zhang, J. Zhang, G. Wang, Current safety practices in nano-research laboratories in China, J. Nanosci. Nanotechnol. 14 (6) (2014) 4700–4705.
  • L.L. Mugivhisa, K. Baloyi, J. Oluwole Olowoyo, Adherence to safety practices and risks associated with toxic chemicals in the research and postgraduate laboratories at Sefako Makgatho Health Sciences University, Pretoria, South Africa, Afr. J. Sci. Technol. Innov. Dev. 13 (6) (2021) 747–756.
  • J.H. Gibson, I. Schröder, N.L. Wayne, A research university’s rapid response to a fatal chemistry accident: Safety changes and outcomes, J. Chem. Health Saf. 21 (4) (2014) 18–26.
  • C.P. McGeough, S.J. Mear, T.F. Jamison, A Call for Increased Focus on Reproductive Health within Lab Safety Culture, J. Am. Chem. Soc. 143 (32) (2021) 12422–12427.
  • C.K.I. Che Ibrahim, S. Belayutham, M.Z. Mohammad, Prevention through Design (PtD) Education for Future Civil Engineers in Malaysia: Current State, Challenges, and Way Forward, J. Civ. Eng. Educ. 147 (1) (2021).
  • D.R. Simmons, A.D. Chau, M. Turner, Validating Resilience at University Scale with Future Civil Engineering and Construction Professionals, J. Manag. Eng. 38 (5) (2022).
  • L. Roloff, M.G.T.C. Ribeiro, F.J. Anaissi, Analysis of substances involved in the synthesis of metallic complexes in the laboratory context of courses in chemistry in Brazil, Rev. Virtual Quim. 15 (4) (2023) 816–826.
  • F. Sherratt, P. Farrell, R. Noble, UK construction site safety: discourses of enforcement and engagement, Constr. Manag. Econ. 31 (6) (2013) 623–635.
  • M. Gunasekera, F. Khan, S. Ahmed, Learning process safety principles through practice, Process Saf. Prog. 37 (3) (2018) 347–354.
  • R. Baudille, M.E. Biancolini, C. Ponzo, University team TVK: The right formula to win, AutoTechnology 5 (2005) 48–50.
  • F. Silva, P. Arezes, P. Swuste, Risk assessment in a research laboratory during sol-gel synthesis of nano-TiO2, Saf. Sci. 80 (2015) 201–212.
  • A.K. Petersen, J.H. Reynolds, L.W.T. Ng, The attitude of civil engineering students towards health and safety risk management: A case study, Eur. J. Eng. Educ. 33 (2008) 499–510.
  • N.N. Shaw, S.B. Sigmann, L.B. Richard, The Research Storyboard: Ideas for Cultivating Safe, Engaged, and Empowered Undergraduate Research Students, J. Chem. Educ. 98 (1) (2021) 167–174.
  • T.A. Van Barneveld, A.J. Sasco, F.E. Van Leeuwen, A cohort study of cancer mortality among biology research laboratory workers in The Netherlands, Cancer Causes Control 15 (1) (2004) 55–66.
  • J.A. Martin, K.A. Miller, E. Pinkhassik, Starting and Sustaining a Laboratory Safety Team (LST), ACS Chem. Health Saf. 27 (3) (2020) 170–182.
  • N. Nasirzadeh, F. Golbabaei, S. Omari Shekaftik, Laboratory activities involving nanomaterials: risk assessment and investigating researchers’ symptoms, Nanoscale 15 (6) (2022) 2674–2689.
  • N. Nehal, B. Choudhary, A. Nagpure, R.K. Gupta, DNA barcoding: a modern age tool for detection of adulteration in food, Crit. Rev. Biotechnol. 41 (5) (2021) 767–791.
  • N.D. Dholakiya, M. Ferjencik, D. Schofield, J. Kubík, Virtual learning for safety, why not a smartphone?, Process Saf. Prog. 38 (2) (2019).
  • D. Gillum, I.A. Mendoza, R.R. Caruso, J. Marmo, The value of biosafety professionals, Appl. Biosaf. 19 (2) (2014) 87–97.
  • J. Krenz, N. Simcox, J. Stoddard Tepe, C.D. Simpson, Transitioning to safer chemicals in academic research laboratories: Lessons learned at the University of Washington, ACS Sustain. Chem. Eng. 4 (7) (2016) 4021–4028.
  • A.S. Cannon, D. Finster, D. Raynie, J.C. Warner, Models for integrating toxicology concepts into chemistry courses and programs, Green Chem. Lett. Rev. 10 (4) (2017) 436–443.
  • Z.-M. Li, X.-G. Cheng, L. Wu, Y.-F. Wei, Fault diagnosis method for wireless security monitoring system in chemistry and chemical engineering laboratory, Beijing Ligong Daxue Xuebao/Trans. Beijing Inst. Technol. 35 (2015).Klein R.C. (2006). Research laboratory wastewater neutralization systems. Journal of Chemical Health and Safety, 13(2), 15-18. Doi: 10.1016/j.chs.2005.02.004
  • H. Housni, K. Bendahhou, M. Tahiri, N. Tahiri Jouti, Compliance Assessment of Scientific Research Laboratories with Legal Requirements Regarding the Integrated Management of Chemicals and Hazardous Waste, Chem. Afr. 5 (4) (2022) 1167–1189.
  • J.R.I. Laxamana, D.M.K.T. Reyes, R.L. Santos, C.E.M. Paraoan, Temporal Variation and Phylogeny of Air and Surface Microflora in Relation to Occupancy Patterns in a Higher Education Institution, Philipp. J. Sci. 153 (3) (2024) 915–921.
  • A.M. Brown, J. Blind, K. Campbell, S. Ghosh, Safeguards for Using Viral Vector Systems in Human Gene Therapy: A Resource for Biosafety Professionals Mitigating Risks in Health Care Settings, Appl. Biosaf. 25 (4) (2020) 184–193.
  • A.M. Novello, E. Buitrago, A. Groso, T. Meyer, Efficient management of nanomaterial hazards in a large number of research laboratories in an academic environment, Saf. Sci. 121 (2020) 158–164.
  • M.P. Tracey, M. Nigam, E. Pirzada, T. Osman, A solventless carbonyl addition reaction as a guided inquiry laboratory activity for second-year undergraduate organic students, Green Chem. Lett. Rev. 17 (1) (2024).
  • A.D. Ménard, E. Flynn, K. Soucie, J.F. Trant, Accident Experiences and Reporting Practices in Canadian Chemistry and Biochemistry Laboratories: A Pilot Investigation, ACS Chem. Health Saf. 29 (1) (2022) 102–109.
  • B. Hughes, D.J. Edwards, I. Martek, N. Chileshe, W.D. Thwala, Assessing the “clerk of works” role in delivering quality affordable housing: a UK case study, Smart Sustain. Built Environ. 11 (4) (2022) 996–1016.
  • J. Verastegui, V. Martínez, W. Roca, M. De Peña, L. Gil, The multinational biosafety project of the Organization of American States, Electron. J. Biotechnol. 7 (1) (2004) 54–61.
  • A. Groso, A. Petri-Fink, B. Rothen-Rutishauser, H. Hofmann, T. Meyer, Engineered nanomaterials: Toward effective safety management in research laboratories, J. Nanobiotechnol. 14 (1) (2016).
  • D. Naglav, M.R. Buchner, G. Bendt, F. Kraus, S. Schulz, Off the Beaten Track—A Hitchhiker’s Guide to Beryllium Chemistry, Angew. Chem. Int. Ed. 55 (36) (2016) 10562–10576.
  • L.A. Holland, J.S. Carver, L.M. Veltri, R.J. Henderson, K.D. Quedado, Enhancing research for undergraduates through a nanotechnology training program that utilizes analytical and bioanalytical tools, Anal. Bioanal. Chem. 410 (24) (2018) 6041–6050.
  • N. Verity, B. Ulm, K. Pham, B. Evangelista, R. Borgon, Demonstrating core molecular biology principles using GST-GFP in a semester-long laboratory course, Biochem. Mol. Biol. Educ. 50 (1) (2022) 55–64.
  • S. Paz, C. Mauer, A. Ritchie, J.D. Robishaw, M. Caputi, A simplified SARS-CoV-2 detection protocol for research laboratories, PLoS One 15 (2020).
  • T. Kobayashi, Y. Sakurai, K. Kanda, Y. Fujita, K. Ono, Remodeling and basic characteristics of the heavy water neutron irradiation facility of the Kyoto University Research Reactor, mainly for neutron capture therapy, Nucl. Technol. 131 (3) (2000) 354–378.
  • Y. Kou, X. Peng, C.E. Dingwell, S.A. Reisbick, I.A. Tonks, A.A. Sitek, Learning Experience Reports Improve Academic Research Safety, J. Chem. Educ. 98 (1) (2021) 150–157.
  • J. Zhang, S. Peng, P. Wang, F. Zhang, Q. Wang, Z. Dou, Reconstruction of Curriculum System for Chemical Safety Undergraduate Education under Emerging Engineering Education Requirements, ACS Chem. Health Saf. 31 (5) (2024) 378–392.
  • D.-G. Yu, Q. Li, W. Song, L. Xu, K. Zhang, T. Zhou, Advanced Technique-Based Combination of Innovation Education and Safety Education in Higher Education, J. Chem. Educ. 100 (2) (2023) 507–516.
  • A.Y. Zhao, N.E. DeSousa, H.C. Henriksen, A.M. May, X. Tan, D.S. Lawrence, An Assessment of Laboratory Safety Training in Undergraduate Education, J. Chem. Educ. 101 (4) (2024) 1626–1634.
  • K. Palanikumar, E. Natarajan, S. Suresh, D.G. Mohan, C. Prakash, K. Kaur, Prospects of friction stir processed Mg alloys and composites—Reviews and suggestions, J. Mater. Res. Technol. 31 (2024) 971–997.
  • S. Omari Shekaftik, R. Yarahmadi, N. Moghadasi, Z. Sedghi Noushabadi, A.F. Hosseini, A. Ashtarinezhad, Investigation of recommended good practices to reduce exposure to nanomaterials in nanotechnology laboratories in Tehran, Iran, J. Nanopart. Res. 22 (3) (2020).
  • Q.-Y. Sun, X.-J. Liu, Y.-M. Sun, M.-C. Wang, X. Han, X.-G. Chen, A Security Wireless Monitoring and Automatic Protection System for CCEL, Wirel. Commun. Mob. Comput. 2021 (2021).
  • S.R. Zinn, B.R. Slaw, J.H. Lettow, R.J. Menssen, J.H. Wright, K. Mormann, J.M. Ting, Lessons Learned from the Creation and Development of a Researcher-Led Safety Organization at the University of Chicago, ACS Chem. Health Saf. 27 (2) (2020) 114–124.
  • R. Nakacwa, A. Kiggundu, H. Talwana, J. Namaganda, C. Lilley, W. Tushemereirwe, H. Atkinson, Nematode 18S rRNA gene is a reliable tool for environmental biosafety assessment of transgenic banana in confined field trials, Transgenic Res. 22 (5) (2013) 1003–1010.
  • B.R. Bhattarai, B.P. Regmi, A. Gupta, B. Aryal, B. Adhikari, M. Paudel, N. Parajuli, Importance of advanced analytical techniques and methods for food quality control and pollution analysis for more sustainable future in the least developed countries, Sustain. Chem. Pharm. 27 (2022).
  • C.B. Plescia, E.A. David, D. Patra, R. Sengupta, S. Amiar, Y. Su, R.V. Stahelin, SARS-CoV-2 viral budding and entry can be modeled using BSL-2 level virus-like particles, J. Biol. Chem. 296 (2021).
  • J.R.A. Schmidt, D.J. Nogueira, S.M. Nassar, V.P. Vaz, M.L.N. da Silva, D.S. Vicentini, W.G. Matias, Probabilistic model for assessing occupational risk during the handling of nanomaterials, Nanotoxicology 14 (9) (2020) 1258–1270.
  • I.O. Staehle, T.S. Chung, A. Stopin, G.S. Vadehra, S.I. Hsieh, J.H. Gibson, M.A. Garcia-Garibay, An Approach to Enhance the Safety Culture of an Academic Chemistry Research Laboratory by Addressing Behavioral Factors, J. Chem. Educ. 93 (2) (2016) 217–222.
  • P. Mocellin, J. De Tommaso, C. Vianello, G. Maschio, T. Saulnier-Bellemare, L.D. Virla, G.S. Patience, Experimental methods in chemical engineering: Hazard and operability analysis—HAZOP, Can. J. Chem. Eng. 100 (12) (2022) 3450–3469.
  • B.D. Backus, K. Fivizzani, T. Goodwin, D. Finster, E. Austin, W. Doub, S.D. Wiediger, S. Kinsley, Laboratory safety culture: Summary of the chemical education research and practice – Safety in chemistry education panel discussion, J. Chem. Health Saf. 19 (4) (2012) 20–24.
  • C.I. Kong, J.G. Welfare, H. Shenouda, O.R. Sanchez-Felix, J.B. Floyd Jr., R.C. Hubal, J.S. Heneghan, D.S. Lawrence, Virtually Bridging the Safety Gap between the Lecture Hall and the Research Laboratory, J. Chem. Educ. 99 (5) (2022) 1982–1989.
  • Z.A. Syed, Z. Trabookis, J.W. Bertrand, K.C. Madathil, R.S. Hartley, K.K. Frady, J.R. Wagner, A.K. Gramopadhye, Evaluation of virtual reality based learning materials as a supplement to the undergraduate mechanical engineering laboratory experience, Int. J. Eng. Educ. 35 (3) (2019) 842–852.
  • M. Motalifu, Y. Tian, Y. Liu, D. Zhao, M. Bai, Y. Kan, M. Qi, G. Reniers, N. Roy, Chemical process safety education in China: An overview and the way forward, Saf. Sci. 148 (2022).
  • B. Krsmanovic, R. Weissbrodt, F. Bürki, C.-A. Fournier, D. Glassey-Previdoli, S. Imboden, L. Pillet, M. Repetti, A. Santos Mella, Developing good practices and organisational resilience during the COVID-19 pandemic: A retrospective qualitative case study in a higher education institution, Saf. Sci. 178 (2024).
  • M. Collins, M.B. Lau, W. Ma, A. Shen, B. Wang, S. Cai, M. La Russa, M.C. Jewett, L.S. Qi, A frugal CRISPR kit for equitable and accessible education in gene editing and synthetic biology, Nat. Commun. 15 (1) (2024).
  • M.F. Fleury Rosa, L.M.P. Santos, C.A. Grabois Gadelha, A. Martins de Toledo, R.L. Carregaro, A.K. Almeida da Silva, L.B. Mota da Costa, A. Ferreira da Rocha, S. de Siqueira Rodrigues Fleury Rosa, Translational pathway of a novel PFF2 respirator with chitosan nanotechnology: from the concept to the practical applications, Front. Nanotechnol. 6 (2024).
  • L.M. Frost, A.M. Mendoza, T.-T. Chiou, P. Kim, J. Aizenberg, D.B. Kohn, S.N. De Oliveira, P.S. Weiss, S.J. Jonas, Fluorinated Silane-Modified Filtroporation Devices Enable Gene Knockout in Human Hematopoietic Stem and Progenitor Cells, ACS Appl. Mater. Interfaces 15 (35) (2023) 41299–41309.
  • F. Boccuni, R. Ferrante, F. Tombolini, D. Lega, A. Antonini, A. Alvino, P. Pingue, F. Beltram, L. Sorba, V. Piazza, M. Gemmi, A. Porcari, S. Iavicoli, Workers’ exposure to nano-objects with different dimensionalities in R&D laboratories: Measurement strategy and field studies, Int. J. Mol. Sci. 19 (2) (2018).
  • C.J. Caruana, M. Wasilewska-Radwanska, A. Aurengo, P.P. Dendy, V. Karenauskaite, M.R. Malisan, J.H. Meijer, D. Mihov, V. Mornstein, E. Rokita, E. Vano, M. Weckstrom, M. Wucherer, A comprehensive SWOT audit of the role of the biomedical physicist in the education of healthcare professionals in Europe, Phys. Medica 26 (2) (2010) 98–110.
  • C.M. Straut Langlinais, Z.R. Skeete, J.D.A. Ng, A. Elgersma, F. Elabbar, N. Bader, A.O. Abdalla, L. Navratilova, H. Ben Romdhane, H.L. Lee, D.I. Tofiq, D.I. Saleh, M. Abdoarrahem, Proceedings of the 2024 Advancing Chemical Safety and Security Education Symposium at the 27th IUPAC International Conference on Chemistry Education, ACS Chem. Health Saf. 32 (1) (2025) 5–15.
  • P. Brauner, M. Dalibor, M. Jarke, I. Kunze, I. Koren, G. Lakemeyer, M. Liebenberg, J. Michael, J. Pennekamp, C. Quix, B. Rumpe, W. Van Der Aalst, K. Wehrle, A. Wortmann, M. Ziefle, A Computer Science Perspective on Digital Transformation in Production, ACM Trans. Internet Things 3 (2) (2022).
  • Lloyd’s Register Foundation, World Risk Poll 2024 – Occupational Safety and Health (OSH) Report, Institute for Economics and Peace, 2024.
  • Institute for Economics and Peace, Safety Perceptions Index 2023: Understanding the impact of risk around the world, Lloyd’s Register Foundation, 2023.
Toplam 113 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Organizasyonel, Organizasyon Dışı ve Küresel Bilgi Sistemleri
Bölüm Araştırma Makalesi
Yazarlar

Ali Öz 0000-0002-0814-4020

Gönderilme Tarihi 9 Eylül 2025
Kabul Tarihi 8 Aralık 2025
Yayımlanma Tarihi 26 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 2

Kaynak Göster

APA Öz, A. (2025). OCCUPATIONAL HEALTH AND SAFETY AS A DETERMINANT OF RESEARCH QUALITY: A BIBLIOMETRIC ANALYSIS OF APPLIED SCIENCES LABORATORIES. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi, 9(2), 223-237. https://doi.org/10.62301/usmtd.1780181
AMA Öz A. OCCUPATIONAL HEALTH AND SAFETY AS A DETERMINANT OF RESEARCH QUALITY: A BIBLIOMETRIC ANALYSIS OF APPLIED SCIENCES LABORATORIES. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. Aralık 2025;9(2):223-237. doi:10.62301/usmtd.1780181
Chicago Öz, Ali. “OCCUPATIONAL HEALTH AND SAFETY AS A DETERMINANT OF RESEARCH QUALITY: A BIBLIOMETRIC ANALYSIS OF APPLIED SCIENCES LABORATORIES”. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi 9, sy. 2 (Aralık 2025): 223-37. https://doi.org/10.62301/usmtd.1780181.
EndNote Öz A (01 Aralık 2025) OCCUPATIONAL HEALTH AND SAFETY AS A DETERMINANT OF RESEARCH QUALITY: A BIBLIOMETRIC ANALYSIS OF APPLIED SCIENCES LABORATORIES. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi 9 2 223–237.
IEEE A. Öz, “OCCUPATIONAL HEALTH AND SAFETY AS A DETERMINANT OF RESEARCH QUALITY: A BIBLIOMETRIC ANALYSIS OF APPLIED SCIENCES LABORATORIES”, Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi, c. 9, sy. 2, ss. 223–237, 2025, doi: 10.62301/usmtd.1780181.
ISNAD Öz, Ali. “OCCUPATIONAL HEALTH AND SAFETY AS A DETERMINANT OF RESEARCH QUALITY: A BIBLIOMETRIC ANALYSIS OF APPLIED SCIENCES LABORATORIES”. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi 9/2 (Aralık2025), 223-237. https://doi.org/10.62301/usmtd.1780181.
JAMA Öz A. OCCUPATIONAL HEALTH AND SAFETY AS A DETERMINANT OF RESEARCH QUALITY: A BIBLIOMETRIC ANALYSIS OF APPLIED SCIENCES LABORATORIES. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. 2025;9:223–237.
MLA Öz, Ali. “OCCUPATIONAL HEALTH AND SAFETY AS A DETERMINANT OF RESEARCH QUALITY: A BIBLIOMETRIC ANALYSIS OF APPLIED SCIENCES LABORATORIES”. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi, c. 9, sy. 2, 2025, ss. 223-37, doi:10.62301/usmtd.1780181.
Vancouver Öz A. OCCUPATIONAL HEALTH AND SAFETY AS A DETERMINANT OF RESEARCH QUALITY: A BIBLIOMETRIC ANALYSIS OF APPLIED SCIENCES LABORATORIES. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. 2025;9(2):223-37.