Araştırma Makalesi
BibTex RIS Kaynak Göster

EĞİTİM VE FARKINDALIK AMAÇLI ETKİLEŞİMLİ WEB TABANLI KARBON AYAK İZİ HESAPLAYICISI

Yıl 2025, Cilt: 9 Sayı: 2, 290 - 302, 26.12.2025
https://doi.org/10.62301/usmtd.1822483

Öz

Bu çalışma, bireylerin yıllık karbon ayak izlerini hesaplayarak çevresel farkındalıklarını artırmalarına yardımcı olmak amacıyla tasarlanmış etkileşimli, web tabanlı bir simülasyonun geliştirilmesini sunmaktadır. Uygulama, tamamen istemci tarafında (client-side) çalışan HTML, CSS ve JavaScript bileşenleriyle oluşturulmuş olup, herhangi bir sunucu bağlantısı veya veri paylaşımı gerektirmemektedir. Kullanıcı, elektrik tüketimi, ulaşım türü ve mesafeleri, ısınma yakıtı, uçuş sıklığı, beslenme profili ve atık geri dönüşüm oranı gibi parametreleri girdi olarak sağlayabilmektedir. Model, bu girdilerden elde edilen yıllık emisyonları tipik emisyon faktörleri ile çarparak tCO2e/yıl cinsinden toplam karbon ayak izini hesaplamaktadır. Hesaplanan sonuçlar, altı ana kategori (Elektrik, Ulaşım, Isınma, Uçuşlar, Beslenme ve Atık) için ayrı ayrı sunulmakta ve HTML5 Canvas API kullanılarak dinamik bir çubuk grafik ile görselleştirilmektedir. Ayrıca kullanıcı, “TR Şebeke”, “AB Ortalaması” ve “Düşük Karbon” senaryoları arasında geçiş yaparak enerji karışımındaki değişimlerin toplam emisyon üzerindeki etkisini gerçek zamanlı gözlemleyebilmektedir. Uygulamanın güçlü yönleri arasında, veri gizliliğini koruyan tarayıcı tabanlı mimarisi, gerçek zamanlı hesaplama ve parametrik yapı sayesinde özelleştirilebilir modelleme yaklaşımı yer almaktadır. Ancak, ulusal ortalamalara dayalı emisyon faktörleri ve basitleştirilmiş beslenme/atık modelleri, sonuçların yaklaşık karakterde olmasına neden olmaktadır. Sonuç olarak, geliştirilen simülasyon yalnızca bir hesaplama aracı değil, aynı zamanda kullanıcıların yaşam tarzı kaynaklı emisyonlarını görselleştirerek davranışsal farkındalık geliştirmelerine katkı sağlayan eğitimsel bir araç işlevi görmektedir. Bu tür açık kaynaklı dijital araçların, bireysel ve kurumsal düzeyde karbon nötr hedeflerine ulaşmada etkili birer destekleyici unsur olabileceği değerlendirilmektedir.

Kaynakça

  • S. Legg, “IPCC, 2021: Climate change 2021—the physical science basis,” Interaction, vol. 49, no. 4, pp. 44–45, 2021.
  • D. Rapp, “Estimate of temperature rise in the 21st century for various scenarios,” IgMin Res., vol. 2, no. 7, pp. 564–569, 2024.
  • A. Arneth, “Climate change: Status and trends, and a land-ecosystem perspective,” Zeitschrift für Menschenrechte, vol. 18, no. 1, pp. 7–12, 2024.
  • X. Malcher, F. C. Tenorio-Rodriguez, M. Finkbeiner, and M. Gonzalez-Salazar, “Decarbonization of district heating: A systematic review of carbon footprint and key mitigation strategies,” Renewable and Sustainable Energy Reviews, vol. 215, p. 115602, 2025.
  • N. K. Arora and I. Mishra, “Sustainable development goal 13: recent progress and challenges to climate action,” Environmental Sustainability, vol. 6, no. 3, pp. 297–301, 2023.
  • M. Olczyk and M. Kuc-Czarnecka, “European Green Deal Index: A new composite tool for monitoring European Union’s Green Deal strategy,” Journal of Cleaner Production, vol. 495, p. 145077, 2025.
  • “Paris Agreement,” in Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change (21st Session, 2015: Paris), Getzville, NY, USA: HeinOnline, 2015.
  • D. Pandey, M. Agrawal, and J. S. Pandey, “Carbon footprint: current methods of estimation,” Environmental Monitoring and Assessment, vol. 178, no. 1, pp. 135–160, 2011.
  • S. Melanta, E. Miller-Hooks, and H. G. Avetisyan, “Carbon footprint estimation tool for transportation construction projects,” Journal of Construction Engineering and Management, vol. 139, no. 5, pp. 547–555, 2013.
  • J. Solís-Guzmán, C. Rivero-Camacho, D. Alba-Rodríguez, and A. Martínez-Rocamora, “Carbon footprint estimation tool for residential buildings for non-specialized users: OERCO2 project,” Sustainability, vol. 10, no. 5, p. 1359, 2018.
  • E. Edstrand, “Making the invisible visible: How students make use of carbon footprint calculator in environmental education,” Learning, Media and Technology, vol. 41, no. 2, pp. 416–436, 2016.
  • J. Mulrow, K. Machaj, J. Deanes, and S. Derrible, “The state of carbon footprint calculators: An evaluation of calculator design and user interaction features,” Sustainable Production and Consumption, vol. 18, pp. 33–40, 2019.
  • C. Auger et al., “Open-source carbon footprint estimator: Development and university declination,” Sustainability, vol. 13, no. 8, p. 4315, 2021.
  • J. C. Brazier, Mobile Carbon Footprinting: Sensing and Shaping the Carbon Emissions of Daily Activities Using Digital Technologies, Ph.D. dissertation, Massachusetts Institute of Technology, 2021.
  • J. Mariette et al., “An open-source tool to assess the carbon footprint of research,” Environmental Research: Infrastructure and Sustainability, vol. 2, no. 3, p. 035008, 2022.
  • Elektrik Mühendisleri Odası (EMO), “Çevre ve İklim Değişikliği,” [Online]. Available: https://www.emo.org.tr/genel/bizden_detay.php?kod=135116&tipi=2&sube=
  • K. Kumaş, A. Ö. Akyüz, M. Zaman, and A. Güngör, “Sürdürülebilir bir çevre için karbon ayak izi tespiti: MAKÜ Bucak Sağlık Yüksekokulu örneği,” El-Cezeri, vol. 6, no. 1, pp. 108–117, 2019.
  • T.C. Enerji ve Tabii Kaynaklar Bakanlığı, “Emisyon Faktörleri 2022,” [Online]. Available: https://enerji.gov.tr//Media/Dizin/EVCED/tr/%C3%87evreVe%C4%B0klim/%C4%B0klimDe%C4%9Fi%C5%9Fikli%C4%9Fi/EmisyonFaktorleri/2022_Uretim_Tuketim_EF.pdf
  • J. Bastos, F. Monforti-Ferrario, and G. Melica, “GHG emission factors for electricity consumption,” European Commission, Joint Research Centre (JRC), Dataset, 2024. [Online]. Available: http://data.europa.eu/89h/919df040-0252-4e4e-ad82-c054896e1641
  • S. Tırınk and H. A. Özen, “Determination of carbon footprint at institutions of higher education: The case of the Iğdır University,” Journal of the Institute of Science and Technology, vol. 13, no. 4, pp. 2532–2545, 2023.
  • S. Ören and S. Kocabaş, “İklim değişikliği ile mücadelede kurumsal karbon emisyon farkındalığını arttırma: Zonguldak Bülent Ecevit Üniversitesi Devrek Meslek Yüksekokulu örneği,” Black Sea Journal of Engineering and Science, vol. 6, no. 4, pp. 363–368, 2023.
  • K. Kumaş, H. H. Aksu, O. İnan, A. Akyüz, and A. Güngör, “Estimation of carbon dioxide emissions from airplanes: a case study of a Turkish airport,” in AIP Conference Proceedings, vol. 2178, no. 1, p. 030043, AIP Publishing LLC, 2019.
  • K. Kumaş, O. İnan, A. Ö. Akyüz, and A. Güngör, “Muğla Dalaman Havalimanı uçaklardan kaynaklanan karbon ayak izinin belirlenmesi,” Academic Platform–Journal of Engineering and Science, vol. 7, no. 2, pp. 291–297, 2019.
  • F. Cao, T. Q. Tang, Y. Gao, F. You, and J. Zhang, “Calculation and analysis of new taxiing methods on aircraft fuel consumption and pollutant emissions,” Energy, vol. 277, p. 127618, 2023.
  • TÜİK, Turkish Greenhouse Gas Inventory 1990–2022: National Inventory Document for submission under the United Nations Framework Convention on Climate Change, Nov. 2024.
  • T.C. Enerji ve Tabii Kaynaklar Bakanlığı, “Ulusal Sera Gazı Emisyon Envanteri Ek 1,” [Online]. Available: https://enerji.gov.tr/Media/Dizin/EVCED/tr/%C3%87evreVe%C4%B0klim/%C4%B0klimDe%C4%9Fi%C5%9Fikli%C4%9Fi/UlusalSeraGaz%C4%B1EmisyonEnvanteri/Belgeler/Ek-1.pdf
  • P. Scarborough et al., “Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK,” Climatic Change, vol. 125, no. 2, pp. 179–192, 2014.
  • B. Kovacs, L. Miller, M. C. Heller, and D. Rose, “The carbon footprint of dietary guidelines around the world: a seven country modeling study,” Nutrition Journal, vol. 20, no. 1, p. 15, 2021.
  • L. Rodríguez-Jiménez, M. Romero-Martín, T. Spruell, Z. Steley, and J. Gómez-Salgado, “The carbon footprint of healthcare settings: a systematic review,” Journal of Advanced Nursing, vol. 79, no. 8, pp. 2830–2844, 2023.
  • A. B. S. Schott and T. Andersson, “Food waste minimization from a life-cycle perspective,” Journal of Environmental Management, vol. 147, pp. 219–226, 2015.
  • European Environment Agency (EEA), Municipal Waste Management Across European Countries, Report No. 12/2021, 2021.
  • United States Environmental Protection Agency (EPA), Household Carbon Footprint Calculator: Assumptions and References, 2022.
  • S. G. Burakgazi, “The ecological model of human development,” in Exploring Adult Education Through Learning Theory, IGI Global, pp. 325–342, 2025.
  • A. Rumjaun and F. Narod, “Social learning theory—Albert Bandura,” in Science Education in Theory and Practice: An Introductory Guide to Learning Theory, Cham: Springer Nature Switzerland, pp. 65–82, 2025.
  • United Nations, “Goal 4: Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all,” [Online]. Available: https://sdgs.un.org/goals/goal4
  • United Nations / Global Goals, “Goal 13: Climate Action,” [Online]. Available: https://globalgoals.org/goals/13-climate-action/
  • A. A. Vărzaru, C. G. Bocean, M. Gheorghe, D. Simion, M. G. Mangra, and A. A. Cioabă, “Assessing the impact of digital technologies on the Sustainable Development Goals within the European Union,” Electronics, vol. 13, no. 23, p. 4695, 2024.
  • D. Hariyani, P. Hariyani, and S. Mishra, “Digital technologies for the Sustainable Development Goals,” Green Technologies and Sustainability, p. 100202, 2025.

INTERACTIVE WEB-BASED CARBON FOOTPRINT CALCULATOR FOR EDUCATIONAL AND AWARENESS PURPOSES

Yıl 2025, Cilt: 9 Sayı: 2, 290 - 302, 26.12.2025
https://doi.org/10.62301/usmtd.1822483

Öz

This study presents the development of an interactive web-based simulation designed to help individuals increase their environmental awareness by calculating their annual carbon footprint. The application is built entirely with client-side HTML, CSS, and JavaScript components, requiring no server connection or data sharing. The user can provide parameters such as electricity consumption, type and distance of transportation, heating fuel, flight frequency, diet profile, and waste recycling rate as inputs. The model calculates the total carbon footprint in tCO2e/year by multiplying the annual emissions derived from these inputs by typical emission factors. The calculated results are presented separately for six main categories (Electricity, Transportation, Heating, Flights, Diet, and Waste) and visualized using a dynamic bar chart with the HTML5 Canvas API. Furthermore, the user can observe the effect of changes in the energy mix on total emissions in real-time by switching between the TR Grid, EU Average, and Low Carbon scenarios. The application’s strengths include its browser-based architecture, which protects data privacy; real-time calculation; and a customizable modeling approach enabled by its parametric structure. However, emission factors based on national averages and simplified diet/waste models mean the results are approximate in nature. In conclusion, the developed simulation serves not only as a calculation tool but also as an educational instrument that contributes to developing behavioral awareness by visualizing users' lifestyle-related emissions. It is assessed that such open-source digital tools can be effective supportive elements in achieving carbon neutrality goals at both the individual and institutional levels.

Kaynakça

  • S. Legg, “IPCC, 2021: Climate change 2021—the physical science basis,” Interaction, vol. 49, no. 4, pp. 44–45, 2021.
  • D. Rapp, “Estimate of temperature rise in the 21st century for various scenarios,” IgMin Res., vol. 2, no. 7, pp. 564–569, 2024.
  • A. Arneth, “Climate change: Status and trends, and a land-ecosystem perspective,” Zeitschrift für Menschenrechte, vol. 18, no. 1, pp. 7–12, 2024.
  • X. Malcher, F. C. Tenorio-Rodriguez, M. Finkbeiner, and M. Gonzalez-Salazar, “Decarbonization of district heating: A systematic review of carbon footprint and key mitigation strategies,” Renewable and Sustainable Energy Reviews, vol. 215, p. 115602, 2025.
  • N. K. Arora and I. Mishra, “Sustainable development goal 13: recent progress and challenges to climate action,” Environmental Sustainability, vol. 6, no. 3, pp. 297–301, 2023.
  • M. Olczyk and M. Kuc-Czarnecka, “European Green Deal Index: A new composite tool for monitoring European Union’s Green Deal strategy,” Journal of Cleaner Production, vol. 495, p. 145077, 2025.
  • “Paris Agreement,” in Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change (21st Session, 2015: Paris), Getzville, NY, USA: HeinOnline, 2015.
  • D. Pandey, M. Agrawal, and J. S. Pandey, “Carbon footprint: current methods of estimation,” Environmental Monitoring and Assessment, vol. 178, no. 1, pp. 135–160, 2011.
  • S. Melanta, E. Miller-Hooks, and H. G. Avetisyan, “Carbon footprint estimation tool for transportation construction projects,” Journal of Construction Engineering and Management, vol. 139, no. 5, pp. 547–555, 2013.
  • J. Solís-Guzmán, C. Rivero-Camacho, D. Alba-Rodríguez, and A. Martínez-Rocamora, “Carbon footprint estimation tool for residential buildings for non-specialized users: OERCO2 project,” Sustainability, vol. 10, no. 5, p. 1359, 2018.
  • E. Edstrand, “Making the invisible visible: How students make use of carbon footprint calculator in environmental education,” Learning, Media and Technology, vol. 41, no. 2, pp. 416–436, 2016.
  • J. Mulrow, K. Machaj, J. Deanes, and S. Derrible, “The state of carbon footprint calculators: An evaluation of calculator design and user interaction features,” Sustainable Production and Consumption, vol. 18, pp. 33–40, 2019.
  • C. Auger et al., “Open-source carbon footprint estimator: Development and university declination,” Sustainability, vol. 13, no. 8, p. 4315, 2021.
  • J. C. Brazier, Mobile Carbon Footprinting: Sensing and Shaping the Carbon Emissions of Daily Activities Using Digital Technologies, Ph.D. dissertation, Massachusetts Institute of Technology, 2021.
  • J. Mariette et al., “An open-source tool to assess the carbon footprint of research,” Environmental Research: Infrastructure and Sustainability, vol. 2, no. 3, p. 035008, 2022.
  • Elektrik Mühendisleri Odası (EMO), “Çevre ve İklim Değişikliği,” [Online]. Available: https://www.emo.org.tr/genel/bizden_detay.php?kod=135116&tipi=2&sube=
  • K. Kumaş, A. Ö. Akyüz, M. Zaman, and A. Güngör, “Sürdürülebilir bir çevre için karbon ayak izi tespiti: MAKÜ Bucak Sağlık Yüksekokulu örneği,” El-Cezeri, vol. 6, no. 1, pp. 108–117, 2019.
  • T.C. Enerji ve Tabii Kaynaklar Bakanlığı, “Emisyon Faktörleri 2022,” [Online]. Available: https://enerji.gov.tr//Media/Dizin/EVCED/tr/%C3%87evreVe%C4%B0klim/%C4%B0klimDe%C4%9Fi%C5%9Fikli%C4%9Fi/EmisyonFaktorleri/2022_Uretim_Tuketim_EF.pdf
  • J. Bastos, F. Monforti-Ferrario, and G. Melica, “GHG emission factors for electricity consumption,” European Commission, Joint Research Centre (JRC), Dataset, 2024. [Online]. Available: http://data.europa.eu/89h/919df040-0252-4e4e-ad82-c054896e1641
  • S. Tırınk and H. A. Özen, “Determination of carbon footprint at institutions of higher education: The case of the Iğdır University,” Journal of the Institute of Science and Technology, vol. 13, no. 4, pp. 2532–2545, 2023.
  • S. Ören and S. Kocabaş, “İklim değişikliği ile mücadelede kurumsal karbon emisyon farkındalığını arttırma: Zonguldak Bülent Ecevit Üniversitesi Devrek Meslek Yüksekokulu örneği,” Black Sea Journal of Engineering and Science, vol. 6, no. 4, pp. 363–368, 2023.
  • K. Kumaş, H. H. Aksu, O. İnan, A. Akyüz, and A. Güngör, “Estimation of carbon dioxide emissions from airplanes: a case study of a Turkish airport,” in AIP Conference Proceedings, vol. 2178, no. 1, p. 030043, AIP Publishing LLC, 2019.
  • K. Kumaş, O. İnan, A. Ö. Akyüz, and A. Güngör, “Muğla Dalaman Havalimanı uçaklardan kaynaklanan karbon ayak izinin belirlenmesi,” Academic Platform–Journal of Engineering and Science, vol. 7, no. 2, pp. 291–297, 2019.
  • F. Cao, T. Q. Tang, Y. Gao, F. You, and J. Zhang, “Calculation and analysis of new taxiing methods on aircraft fuel consumption and pollutant emissions,” Energy, vol. 277, p. 127618, 2023.
  • TÜİK, Turkish Greenhouse Gas Inventory 1990–2022: National Inventory Document for submission under the United Nations Framework Convention on Climate Change, Nov. 2024.
  • T.C. Enerji ve Tabii Kaynaklar Bakanlığı, “Ulusal Sera Gazı Emisyon Envanteri Ek 1,” [Online]. Available: https://enerji.gov.tr/Media/Dizin/EVCED/tr/%C3%87evreVe%C4%B0klim/%C4%B0klimDe%C4%9Fi%C5%9Fikli%C4%9Fi/UlusalSeraGaz%C4%B1EmisyonEnvanteri/Belgeler/Ek-1.pdf
  • P. Scarborough et al., “Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK,” Climatic Change, vol. 125, no. 2, pp. 179–192, 2014.
  • B. Kovacs, L. Miller, M. C. Heller, and D. Rose, “The carbon footprint of dietary guidelines around the world: a seven country modeling study,” Nutrition Journal, vol. 20, no. 1, p. 15, 2021.
  • L. Rodríguez-Jiménez, M. Romero-Martín, T. Spruell, Z. Steley, and J. Gómez-Salgado, “The carbon footprint of healthcare settings: a systematic review,” Journal of Advanced Nursing, vol. 79, no. 8, pp. 2830–2844, 2023.
  • A. B. S. Schott and T. Andersson, “Food waste minimization from a life-cycle perspective,” Journal of Environmental Management, vol. 147, pp. 219–226, 2015.
  • European Environment Agency (EEA), Municipal Waste Management Across European Countries, Report No. 12/2021, 2021.
  • United States Environmental Protection Agency (EPA), Household Carbon Footprint Calculator: Assumptions and References, 2022.
  • S. G. Burakgazi, “The ecological model of human development,” in Exploring Adult Education Through Learning Theory, IGI Global, pp. 325–342, 2025.
  • A. Rumjaun and F. Narod, “Social learning theory—Albert Bandura,” in Science Education in Theory and Practice: An Introductory Guide to Learning Theory, Cham: Springer Nature Switzerland, pp. 65–82, 2025.
  • United Nations, “Goal 4: Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all,” [Online]. Available: https://sdgs.un.org/goals/goal4
  • United Nations / Global Goals, “Goal 13: Climate Action,” [Online]. Available: https://globalgoals.org/goals/13-climate-action/
  • A. A. Vărzaru, C. G. Bocean, M. Gheorghe, D. Simion, M. G. Mangra, and A. A. Cioabă, “Assessing the impact of digital technologies on the Sustainable Development Goals within the European Union,” Electronics, vol. 13, no. 23, p. 4695, 2024.
  • D. Hariyani, P. Hariyani, and S. Mishra, “Digital technologies for the Sustainable Development Goals,” Green Technologies and Sustainability, p. 100202, 2025.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Ali Özhan Akyüz 0000-0001-9265-7293

Kazım Kumaş 0000-0002-2348-4664

Gönderilme Tarihi 12 Kasım 2025
Kabul Tarihi 17 Aralık 2025
Yayımlanma Tarihi 26 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 2

Kaynak Göster

APA Akyüz, A. Ö., & Kumaş, K. (2025). INTERACTIVE WEB-BASED CARBON FOOTPRINT CALCULATOR FOR EDUCATIONAL AND AWARENESS PURPOSES. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi, 9(2), 290-302. https://doi.org/10.62301/usmtd.1822483
AMA Akyüz AÖ, Kumaş K. INTERACTIVE WEB-BASED CARBON FOOTPRINT CALCULATOR FOR EDUCATIONAL AND AWARENESS PURPOSES. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. Aralık 2025;9(2):290-302. doi:10.62301/usmtd.1822483
Chicago Akyüz, Ali Özhan, ve Kazım Kumaş. “INTERACTIVE WEB-BASED CARBON FOOTPRINT CALCULATOR FOR EDUCATIONAL AND AWARENESS PURPOSES”. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi 9, sy. 2 (Aralık 2025): 290-302. https://doi.org/10.62301/usmtd.1822483.
EndNote Akyüz AÖ, Kumaş K (01 Aralık 2025) INTERACTIVE WEB-BASED CARBON FOOTPRINT CALCULATOR FOR EDUCATIONAL AND AWARENESS PURPOSES. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi 9 2 290–302.
IEEE A. Ö. Akyüz ve K. Kumaş, “INTERACTIVE WEB-BASED CARBON FOOTPRINT CALCULATOR FOR EDUCATIONAL AND AWARENESS PURPOSES”, Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi, c. 9, sy. 2, ss. 290–302, 2025, doi: 10.62301/usmtd.1822483.
ISNAD Akyüz, Ali Özhan - Kumaş, Kazım. “INTERACTIVE WEB-BASED CARBON FOOTPRINT CALCULATOR FOR EDUCATIONAL AND AWARENESS PURPOSES”. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi 9/2 (Aralık2025), 290-302. https://doi.org/10.62301/usmtd.1822483.
JAMA Akyüz AÖ, Kumaş K. INTERACTIVE WEB-BASED CARBON FOOTPRINT CALCULATOR FOR EDUCATIONAL AND AWARENESS PURPOSES. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. 2025;9:290–302.
MLA Akyüz, Ali Özhan ve Kazım Kumaş. “INTERACTIVE WEB-BASED CARBON FOOTPRINT CALCULATOR FOR EDUCATIONAL AND AWARENESS PURPOSES”. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi, c. 9, sy. 2, 2025, ss. 290-02, doi:10.62301/usmtd.1822483.
Vancouver Akyüz AÖ, Kumaş K. INTERACTIVE WEB-BASED CARBON FOOTPRINT CALCULATOR FOR EDUCATIONAL AND AWARENESS PURPOSES. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. 2025;9(2):290-302.