Araştırma Makalesi
BibTex RIS Kaynak Göster

BİLGİ VE İLETİŞİM TEKNOLOJİLERİ PERSPEKTİFİNDEN KARBON AYAK İZİ

Yıl 2025, Cilt: 9 Sayı: 1, 118 - 132, 30.06.2025
https://doi.org/10.62301/usmtd.1712846

Öz

Karbon ayak izi, insan faaliyetlerinin çevresel etkilerini değerlendirmek ve sürdürülebilirlik politikalarını yönlendirmek amacıyla kullanılan temel göstergelerden biridir. Bu gösterge, bireyler, kurumlar veya ürünler tarafından atmosfere salınan toplam sera gazı miktarını ifade eder. Karbon ayak izi yalnızca enerji üretimi gibi doğrudan emisyonları değil, aynı zamanda üretim süreçleri, lojistik faaliyetler ve atık yönetimi gibi dolaylı emisyon kaynaklarını da kapsamaktadır. Günümüzde bu ölçümler çeşitli standartlar ve metodolojiler temelinde gerçekleştirilmektedir. Özellikle sensör teknolojilerindeki ilerlemeler, bulut tabanlı sistemlerin yaygınlaşması ve artan hesaplama kapasitesi sayesinde karbon ayak izinin dinamik ve gerçek zamanlı olarak izlenmesi mümkün hale gelmiştir. Bu teknolojik gelişmeler, çevresel etkilerin zaman içinde daha hassas bir şekilde takip edilmesini sağlamakta; bireysel tüketim alışkanlıklarına yönelik öneriler sunarak toplumsal farkındalığın artmasına katkıda bulunmaktadır. Bu çalışmada karbon ayak izinin tanımı, önemi, ilgili standartlar, hesaplama yöntemleri, fiyatlandırma mekanizmaları ve yenilikçi teknolojik yaklaşımlar kapsamlı bir biçimde ele alınmaktadır.

Kaynakça

  • Y. Serengil, Küresel Isınma ve Olası Ekolojik Sonuçları, İstanbul Üniversitesi Orman Fakültesi Dergisi 45 (1-2) (1995) 135-152.
  • M. Türkeş, IPCC İklim Değişikliği 2013: Fiziksel Bilim Temeli Politikacılar için Özet Raporundaki Yeni Bulgu ve Sonuçların Bilimsel Bir Değerlendirmesi, İklim Değişikliğinde Son Gelişmeler: IPCC 2013 Raporu Paneli Bildiriler Kitapçığı, İstanbul Politikalar Merkezi, Sabancı Üniversitesi, İstanbul (2013) 8-18
  • B. Davarcıoğlu, Küresel İklim Değişikliği ve Uyum Çalışmaları: Türkiye Açısından Değerlendirilmesi, Mesleki Bilimler Dergisi 7 (2) (2018).
  • M.M. Yatarkalkmaz, M.B. Özdemir, The calculation of greenhouse gas emissions of a family and projections for emission reduction, Journal of Energy Systems 3 (2019) 96–110. https://doi.org/10.30521/jes.566516.
  • E. Bi̇lgiç, İklim Değişikliği İle Mücadelede Emisyon Ticareti ve Türkiye Uygulaması, Uzmanlık Tezi, T.C. Çevre ve Şehircilik Bakanlığı Strateji Geliştirme Başkanlığı, Ankara, (2017).
  • TS EN ISO 14064-1, Greenhouse Gases-Part 1: Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals, Turkish Standards Institution, Ankara, Turkey, (2007).
  • TS EN ISO 14064-2, Greenhouse Gases-Part 2: Specification with guidance at the project level for quantification, monitoring and reporting of greenhouse gas emission reductions or removal enhancements, Turkish Standards Institution, Ankara, Turkey, (2007).
  • TS EN ISO 14064-3, Greenhouse Gases-Part 3: Specification with guidance for the validation and verification of greenhouse gas assertions, Turkish Standards Institution, Ankara, Turkey, (2007).
  • TÜİK Kurumsal, Sera Gazı Emisyon İstatistikleri 1990–2022, https://data.tuik.gov.tr/Bulten/Index?p=Sera-Gazi-Emisyon-Istatistikleri-1990-2022-53701 (accessed 10.06.25).
  • TÜİK Kurumsal, Sera Gazı Emisyon İstatistikleri 1990–2023, https://data.tuik.gov.tr/Bulten/Index?p=Sera-Gazi-Emisyon-Istatistikleri-1990-2023-53974 (accessed 20.05.25).
  • H. Pabuçcu, T. Bayramoğlu, Yapay Sinir Ağları ile CO₂ Emisyonu Tahmini: Türkiye Örneği, Gazi Üni. İktisadi ve İdari Bilimler Fakültesi Dergisi 18 (3) (2016) 762–778
  • A.K. Seyhan, M. Çerçi, IPCC Tier 1 ve DEFRA Metotları ile Karbon Ayak İzinin Belirlenmesi: Erzincan Binali Yıldırım Üniversitesi’nin Yakıt ve Elektrik Tüketimi Örneği, J. Nat. Appl. Sci. 26 (2022) 386–397. https://doi.org/10.19113/sdufenbed.1061021.
  • F. Scrucca, G. Barberio, V. Fantin, P.L. Porta, M. Barbanera, Carbon Footprint: Concept, Methodology and Calculation, in: S.S. Muthu (Ed.), Carbon Footprint Case Studies: Municipal Solid Waste Management, Sustainable Road Transport and Carbon Sequestration, Springer, Singapore, 2021, pp. 1–31. https://doi.org/10.1007/978-981-15-9577-6_1.
  • J.P. Padgett, A.C. Steinemann, J.H. Clarke, M.P. Vandenbergh, A comparison of carbon calculators, Environmental Impact Assessment Review 28 (2008) 106–115. https://doi.org/10.1016/j.eiar.2007.08.001.
  • F. Rahman, C. O’Brien, S.I. Ahamed, H. Zhang, L. Liu, Design and implementation of an open framework for ubiquitous carbon footprint calculator applications, Sustainable Computing: Informatics and Systems 1 (2011) 257–274. https://doi.org/10.1016/j.suscom.2011.06.001.
  • D. Andersson, A novel approach to calculate individuals’ carbon footprints using financial transaction data – App development and design, Journal of Cleaner Production 256 (2020) 120396. https://doi.org/10.1016/j.jclepro.2020.120396.
  • T. Wiedmann, J. Minx, A definition of ‘carbon footprint,’ 1st ed., Nova Publishers, 2008.
  • K. Valls-Val, M.D. Bovea, Carbon footprint in Higher Education Institutions: a literature review and prospects for future research, Clean Techn Environ Policy 23 (2021) 2523–2542. https://doi.org/10.1007/s10098-021-02180-2.
  • A.S. Toröz, Determination of the carbon footprint of a port reception facility for ship generated waste, Master’s Thesis, Istanbul Technical University, 2015.
  • T. Atabey, The calculation of the carbon footprint: The city of Diyarbakir, Master’s Thesis, Firat University, 2013.
  • G. Binboğa, A. Ünal, Sürdürülebilirlik Ekseninde Manisa Celal Bayar Üniversitesi’nin Karbon Ayak Izinin Hesaplanmasina Yönelik Bir Araştirma, UİİİD (2018) 187–202. https://doi.org/10.18092/ulikidince.323532.
  • L. Ozawa-Meida, P. Brockway, K. Letten, J. Davies, P. Fleming, Measuring carbon performance in a UK University through a consumption-based carbon footprint: De Montfort University case study, Journal of Cleaner Production 56 (2013) 185–198. https://doi.org/10.1016/j.jclepro.2011.09.028.
  • K. Kumaş, A. Akyüz, A. Güngör, Burdur Mehmet Akif Ersoy Üniversitesi Bucak Yerleşkesi Yükseköğretim Birimlerinin Karbon Ayak İzi Tespiti, Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi (2019). https://doi.org/10.28948/ngumuh.598212.
  • Greenhouse gas reporting: conversion factors 2024, GOV.UK (2024). https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2024 (accessed 22.04.25).
  • C. Peter, A. Fiore, C. Nendel, C. Xiloyannis, Improving the accounting of land-based emissions in Carbon Footprint of agricultural products: comparison between IPCC Tier 1, Tier 2 and Tier 3 approaches, LCA Food 2014 (2014). https://doi.org/10.1029/2001GB001812.
  • J. Mulrow, K. Machaj, J. Deanes, S. Derrible, The state of carbon footprint calculators: An evaluation of calculator design and user interaction features, Sustainable Production and Consumption 18 (2019) 33–40. https://doi.org/10.1016/j.spc.2018.12.001.
  • G. Harangozo, C. Szigeti, Corporate carbon footprint analysis in practice – With a special focus on validity and reliability issues, Journal of Cleaner Production 167 (2017) 1177–1183. https://doi.org/10.1016/j.jclepro.2017.07.237.
  • B. Kim, R. Neff, Measurement and communication of greenhouse gas emissions from U.S. food consumption via carbon calculators, Ecological Economics 69 (2009) 186–196. https://doi.org/10.1016/j.ecolecon.2009.08.017.
  • D. Nerudová, M. Dobranschi, Pigouvian Carbon Tax Rate: Can It Help the European Union Achieve Sustainability?, in: P. Huber, D. Nerudová, P. Rozmahel (Eds.), Competitiveness, Social Inclusion and Sustainability in a Diverse European Union: Perspectives from Old and New Member States, Springer International Publishing, Cham, 2016, pp. 145–159. https://doi.org/10.1007/978-3-319-17299-6_8.
  • E. Toma, Potential impacts of a carbon tax on the day-ahead market prices and the electricity generation mix, Master’s Thesis, Istanbul Technical University, 2020.
  • G. Bavbek, Carbon Taxation Policy Case Studies, EDAM Energy & Climate Change Climate Action Paper Series 2016/4 (2016)
  • World Bank, State and Trends of Carbon Pricing 2024, World Bank, Washington, DC, (2024).
  • S. Yıldız, Sürdürülebilir Kalkınma İçin Karbon Vergisi, Muhasebe ve Vergi Uygulamaları Dergisi / Journal of Accounting & Taxation Studies 10 (2017) 367–384. https://doi.org/10.29067/muvu.333079.
  • H. Aliusta, B. Yılmaz, H. Kırlıoğlu, Küresel Isınmayı Önleme Sürecinde Uygulanan Piyasa Temelli İktisadi Araçlar: Karbon Ticareti ve Karbon Vergisi, İJMEB 12 (2016) 382–401.
  • S.M. Schennach, The Economics of Pollution Permit Banking in the Context of Title IV of the 1990 Clean Air Act Amendments, Journal of Environmental Economics and Management 40 (2000) 189–210. https://doi.org/10.1006/jeem.1999.1122.
  • K. Pamukçu, Küresel Emisyon Ticareti Sistemi İçin Bir Model: Avrupa Birliği Emisyon Ticareti Programı, İstanbul Üniversitesi Siyasal Bilgiler Fakültesi Dergisi 11 (2007) 17–42.
  • B.E. Yüksel, M. Özcan, E. Ocaklı, Türkiye Gönüllü Karbon Piyasaları’nın Değerlendirilmesi, DÜBİTED 10 (2022) 10–25. https://doi.org/10.29130/dubited.1101215.
  • S. Ünsal, The evaluation of the carbon tax implementation within the framework of Green Reconciliation in terms of the EU and Türkiye, Master’s Thesis, Anadolu University, 2023.
  • IPCC Core Writing Team [Calvin et al.], Climate Change 2023: Synthesis Report. Contribution of WGs I–III to the Sixth Assessment Report, H. Lee & J. Romero (eds.), IPCC, Geneva, Switzerland (2023). https://doi.org/10.59327/IPCC/AR6‑9789291691647.
  • M. Whitaker, G.A. Heath, P. O’Donoughue, M. Vorum, Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation, Journal of Industrial Ecology 16 (2012) S53–S72. https://doi.org/10.1111/j.1530-9290.2012.00465.x.
  • N.Y. Amponsah, M. Troldborg, B. Kington, I. Aalders, R.L. Hough, Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations, Renewable and Sustainable Energy Reviews 39 (2014) 461–475. https://doi.org/10.1016/j.rser.2014.07.087.
  • D. Nugent, B.K. Sovacool, Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey, Energy Policy 65 (2014) 229–244. https://doi.org/10.1016/j.enpol.2013.10.048.
  • D. Weisser, A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies, Energy 32 (2007) 1543–1559. https://doi.org/10.1016/j.energy.2007.01.008.
  • A.S.G. Andrae, T. Edler, On Global Electricity Usage of Communication Technology: Trends to 2030, Challenges 6 (2015) 117–157. https://doi.org/10.3390/challe6010117.
  • C. Freitag, M. Berners-Lee, K. Widdicks, B. Knowles, G. Blair, A. Friday, The climate impact of ICT: A review of estimates, trends and regulations, (2021). https://doi.org/10.48550/arXiv.2102.02622.
  • J. Dodge, T. Prewitt, R. Tachet Des Combes, E. Odmark, R. Schwartz, E. Strubell, A.S. Luccioni, N.A. Smith, N. DeCario, W. Buchanan, Measuring the Carbon Intensity of AI in Cloud Instances, in: 2022 ACM Conference on Fairness, Accountability, and Transparency, ACM, Seoul Republic of Korea, 2022, pp. 1877–1894. https://doi.org/10.1145/3531146.3533234.
  • K. Kirkpatrick, The Carbon Footprint of Artificial Intelligence, Commun. ACM 66 (2023) 17–19. https://doi.org/10.1145/3603746.
  • Y. Yu, J. Wang, Y. Liu, P. Yu, D. Wang, P. Zheng, M. Zhang, Revisit the environmental impact of artificial intelligence: the overlooked carbon emission source?, Front. Environ. Sci. Eng. 18 (2024) 158. https://doi.org/10.1007/s11783-024-1918-y.
  • K.S. Cheung, M. Kaul, G. Jahangirova, M.R. Mousavi, E. Zie, Comparative Analysis of Carbon Footprint in Manual vs. LLM-Assisted Code Development, arXiv.Org (2025). https://doi.org/10.1145/3711919.3728678.
  • C. Stoll, L. Klaaßen, U. Gallersdörfer, The Carbon Footprint of Bitcoin, Joule 3 (2019) 1647–1661. https://doi.org/10.1016/j.joule.2019.05.012.
  • J. Grealey, L. Lannelongue, W.-Y. Saw, J. Marten, G. Méric, S. Ruiz-Carmona, M. Inouye, The Carbon Footprint of Bioinformatics, Molecular Biology and Evolution 39 (2022) msac034. https://doi.org/10.1093/molbev/msac034.
  • Y. Lu, Z. Liao, The influence of AI application on carbon emission intensity of industrial enterprises in China, Sci Rep 15 (2025) 12585. https://doi.org/10.1038/s41598-025-97110-3.
  • G.R. Rajendiran, R. Ayyadurai, Reducing E‑Commerce Carbon Footprint Through AI‑Driven Warehouse and Supply Chain Optimization, Reduct. Footprint AI Appl. 9 (2023).
  • H. Ji, W. Bi, J. Yan, S. Wu, H. Han, ICTs-driven Agriculture Contributes to the Mission of Carbon Reduction, in: Interdisciplinary Research in Technology and Management, 1st ed., CRC Press, London, 2024, pp. 453–462. https://doi.org/10.1201/9781003430469-53.
  • A. Andrae, L. Hu, L. Liu, J. Spear, K. Rubel, Delivering Tangible Carbon Emission and Cost Reduction through the ICT Supply Chain, International Journal of Green Technology 3 (2017) 1–10. https://doi.org/10.30634/2414-2077.2017.03.1.
  • B. Tomlinson, R.W. Black, D.J. Patterson, A.W. Torrance, The carbon emissions of writing and illustrating are lower for AI than for humans, Sci Rep 14 (2024) 3732. https://doi.org/10.1038/s41598-024-54271-x.
  • C.A.M. Ajufo, G. Bekaroo, An Automated Personal Carbon Footprint Calculator for Estimating Carbon Emissions from Transportation Use, in: Proceedings of the International Conference on Artificial Intelligence and Its Applications, Association for Computing Machinery, New York, NY, USA, 2021, pp. 1–7. https://doi.org/10.1145/3487923.3487935.
  • S. Wang, F. Tao, Y. Shi, Optimization of Inventory Routing Problem in Refined Oil Logistics with the Perspective of Carbon Tax, Energies 11 (2018) 1437. https://doi.org/10.3390/en11061437.
  • O. Jabali, T.V. VanWoensel, A.G.D. Kok, Analysis of Travel Times and CO2 Emissions in Time‐Dependent Vehicle Routing, Prod. Oper. Manag. 21 (2012) 1060-1074. https://journals.sagepub.com/doi/abs/10.1111/j.1937-5956.2012.01338.x (accessed 20.03.25).
  • W.-H. Tsai, K.-C. Lee, J.-Y. Liu, H.-L. Lin, Y.-W. Chou, S.-J. Lin, A mixed activity-based costing decision model for green airline fleet planning under the constraints of the European Union Emissions Trading Scheme, Energy 39 (2012) 218–226. https://doi.org/10.1016/j.energy.2012.01.027.
  • Booking, <https://www.booking.com/> (accessed 14.05.25).
  • Travalyst, <https://travalyst.org/work/aviation-industry/> (accessed 12.05.25).
  • Skyscanner, <https://www.skyscanner.com.tr/> (accessed 10.04.25).
  • Google Flights, <https://www.google.com/travel/flights> (accessed 22.04.25).

CARBON FOOTPRINT THROUGH THE LENS OF INFORMATION AND COMMUNICATION TECHNOLOGY

Yıl 2025, Cilt: 9 Sayı: 1, 118 - 132, 30.06.2025
https://doi.org/10.62301/usmtd.1712846

Öz

The carbon footprint is one of the key indicators used to evaluate the environmental impacts of human activities and to guide sustainability policies. It refers to the total amount of greenhouse gases emitted into the atmosphere by individuals, institutions, or products. The carbon footprint encompasses not only direct emissions such as those resulting from energy production but also indirect sources, including manufacturing processes, logistics operations, and waste management. Today, these measurements are carried out based on various standards and methodologies. In particular, advancements in sensor technologies, the widespread adoption of cloud-based systems, and increased computational capacity have made it possible to monitor carbon footprints dynamically and in real time. These technological developments enable more precise tracking of environmental impacts over time and contribute to raising public awareness by providing personalized recommendations based on individual consumption habits. This study provides a comprehensive examination of the definition and significance of the carbon footprint, relevant standards, calculation methods, pricing mechanisms, and innovative technological approaches.

Kaynakça

  • Y. Serengil, Küresel Isınma ve Olası Ekolojik Sonuçları, İstanbul Üniversitesi Orman Fakültesi Dergisi 45 (1-2) (1995) 135-152.
  • M. Türkeş, IPCC İklim Değişikliği 2013: Fiziksel Bilim Temeli Politikacılar için Özet Raporundaki Yeni Bulgu ve Sonuçların Bilimsel Bir Değerlendirmesi, İklim Değişikliğinde Son Gelişmeler: IPCC 2013 Raporu Paneli Bildiriler Kitapçığı, İstanbul Politikalar Merkezi, Sabancı Üniversitesi, İstanbul (2013) 8-18
  • B. Davarcıoğlu, Küresel İklim Değişikliği ve Uyum Çalışmaları: Türkiye Açısından Değerlendirilmesi, Mesleki Bilimler Dergisi 7 (2) (2018).
  • M.M. Yatarkalkmaz, M.B. Özdemir, The calculation of greenhouse gas emissions of a family and projections for emission reduction, Journal of Energy Systems 3 (2019) 96–110. https://doi.org/10.30521/jes.566516.
  • E. Bi̇lgiç, İklim Değişikliği İle Mücadelede Emisyon Ticareti ve Türkiye Uygulaması, Uzmanlık Tezi, T.C. Çevre ve Şehircilik Bakanlığı Strateji Geliştirme Başkanlığı, Ankara, (2017).
  • TS EN ISO 14064-1, Greenhouse Gases-Part 1: Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals, Turkish Standards Institution, Ankara, Turkey, (2007).
  • TS EN ISO 14064-2, Greenhouse Gases-Part 2: Specification with guidance at the project level for quantification, monitoring and reporting of greenhouse gas emission reductions or removal enhancements, Turkish Standards Institution, Ankara, Turkey, (2007).
  • TS EN ISO 14064-3, Greenhouse Gases-Part 3: Specification with guidance for the validation and verification of greenhouse gas assertions, Turkish Standards Institution, Ankara, Turkey, (2007).
  • TÜİK Kurumsal, Sera Gazı Emisyon İstatistikleri 1990–2022, https://data.tuik.gov.tr/Bulten/Index?p=Sera-Gazi-Emisyon-Istatistikleri-1990-2022-53701 (accessed 10.06.25).
  • TÜİK Kurumsal, Sera Gazı Emisyon İstatistikleri 1990–2023, https://data.tuik.gov.tr/Bulten/Index?p=Sera-Gazi-Emisyon-Istatistikleri-1990-2023-53974 (accessed 20.05.25).
  • H. Pabuçcu, T. Bayramoğlu, Yapay Sinir Ağları ile CO₂ Emisyonu Tahmini: Türkiye Örneği, Gazi Üni. İktisadi ve İdari Bilimler Fakültesi Dergisi 18 (3) (2016) 762–778
  • A.K. Seyhan, M. Çerçi, IPCC Tier 1 ve DEFRA Metotları ile Karbon Ayak İzinin Belirlenmesi: Erzincan Binali Yıldırım Üniversitesi’nin Yakıt ve Elektrik Tüketimi Örneği, J. Nat. Appl. Sci. 26 (2022) 386–397. https://doi.org/10.19113/sdufenbed.1061021.
  • F. Scrucca, G. Barberio, V. Fantin, P.L. Porta, M. Barbanera, Carbon Footprint: Concept, Methodology and Calculation, in: S.S. Muthu (Ed.), Carbon Footprint Case Studies: Municipal Solid Waste Management, Sustainable Road Transport and Carbon Sequestration, Springer, Singapore, 2021, pp. 1–31. https://doi.org/10.1007/978-981-15-9577-6_1.
  • J.P. Padgett, A.C. Steinemann, J.H. Clarke, M.P. Vandenbergh, A comparison of carbon calculators, Environmental Impact Assessment Review 28 (2008) 106–115. https://doi.org/10.1016/j.eiar.2007.08.001.
  • F. Rahman, C. O’Brien, S.I. Ahamed, H. Zhang, L. Liu, Design and implementation of an open framework for ubiquitous carbon footprint calculator applications, Sustainable Computing: Informatics and Systems 1 (2011) 257–274. https://doi.org/10.1016/j.suscom.2011.06.001.
  • D. Andersson, A novel approach to calculate individuals’ carbon footprints using financial transaction data – App development and design, Journal of Cleaner Production 256 (2020) 120396. https://doi.org/10.1016/j.jclepro.2020.120396.
  • T. Wiedmann, J. Minx, A definition of ‘carbon footprint,’ 1st ed., Nova Publishers, 2008.
  • K. Valls-Val, M.D. Bovea, Carbon footprint in Higher Education Institutions: a literature review and prospects for future research, Clean Techn Environ Policy 23 (2021) 2523–2542. https://doi.org/10.1007/s10098-021-02180-2.
  • A.S. Toröz, Determination of the carbon footprint of a port reception facility for ship generated waste, Master’s Thesis, Istanbul Technical University, 2015.
  • T. Atabey, The calculation of the carbon footprint: The city of Diyarbakir, Master’s Thesis, Firat University, 2013.
  • G. Binboğa, A. Ünal, Sürdürülebilirlik Ekseninde Manisa Celal Bayar Üniversitesi’nin Karbon Ayak Izinin Hesaplanmasina Yönelik Bir Araştirma, UİİİD (2018) 187–202. https://doi.org/10.18092/ulikidince.323532.
  • L. Ozawa-Meida, P. Brockway, K. Letten, J. Davies, P. Fleming, Measuring carbon performance in a UK University through a consumption-based carbon footprint: De Montfort University case study, Journal of Cleaner Production 56 (2013) 185–198. https://doi.org/10.1016/j.jclepro.2011.09.028.
  • K. Kumaş, A. Akyüz, A. Güngör, Burdur Mehmet Akif Ersoy Üniversitesi Bucak Yerleşkesi Yükseköğretim Birimlerinin Karbon Ayak İzi Tespiti, Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi (2019). https://doi.org/10.28948/ngumuh.598212.
  • Greenhouse gas reporting: conversion factors 2024, GOV.UK (2024). https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2024 (accessed 22.04.25).
  • C. Peter, A. Fiore, C. Nendel, C. Xiloyannis, Improving the accounting of land-based emissions in Carbon Footprint of agricultural products: comparison between IPCC Tier 1, Tier 2 and Tier 3 approaches, LCA Food 2014 (2014). https://doi.org/10.1029/2001GB001812.
  • J. Mulrow, K. Machaj, J. Deanes, S. Derrible, The state of carbon footprint calculators: An evaluation of calculator design and user interaction features, Sustainable Production and Consumption 18 (2019) 33–40. https://doi.org/10.1016/j.spc.2018.12.001.
  • G. Harangozo, C. Szigeti, Corporate carbon footprint analysis in practice – With a special focus on validity and reliability issues, Journal of Cleaner Production 167 (2017) 1177–1183. https://doi.org/10.1016/j.jclepro.2017.07.237.
  • B. Kim, R. Neff, Measurement and communication of greenhouse gas emissions from U.S. food consumption via carbon calculators, Ecological Economics 69 (2009) 186–196. https://doi.org/10.1016/j.ecolecon.2009.08.017.
  • D. Nerudová, M. Dobranschi, Pigouvian Carbon Tax Rate: Can It Help the European Union Achieve Sustainability?, in: P. Huber, D. Nerudová, P. Rozmahel (Eds.), Competitiveness, Social Inclusion and Sustainability in a Diverse European Union: Perspectives from Old and New Member States, Springer International Publishing, Cham, 2016, pp. 145–159. https://doi.org/10.1007/978-3-319-17299-6_8.
  • E. Toma, Potential impacts of a carbon tax on the day-ahead market prices and the electricity generation mix, Master’s Thesis, Istanbul Technical University, 2020.
  • G. Bavbek, Carbon Taxation Policy Case Studies, EDAM Energy & Climate Change Climate Action Paper Series 2016/4 (2016)
  • World Bank, State and Trends of Carbon Pricing 2024, World Bank, Washington, DC, (2024).
  • S. Yıldız, Sürdürülebilir Kalkınma İçin Karbon Vergisi, Muhasebe ve Vergi Uygulamaları Dergisi / Journal of Accounting & Taxation Studies 10 (2017) 367–384. https://doi.org/10.29067/muvu.333079.
  • H. Aliusta, B. Yılmaz, H. Kırlıoğlu, Küresel Isınmayı Önleme Sürecinde Uygulanan Piyasa Temelli İktisadi Araçlar: Karbon Ticareti ve Karbon Vergisi, İJMEB 12 (2016) 382–401.
  • S.M. Schennach, The Economics of Pollution Permit Banking in the Context of Title IV of the 1990 Clean Air Act Amendments, Journal of Environmental Economics and Management 40 (2000) 189–210. https://doi.org/10.1006/jeem.1999.1122.
  • K. Pamukçu, Küresel Emisyon Ticareti Sistemi İçin Bir Model: Avrupa Birliği Emisyon Ticareti Programı, İstanbul Üniversitesi Siyasal Bilgiler Fakültesi Dergisi 11 (2007) 17–42.
  • B.E. Yüksel, M. Özcan, E. Ocaklı, Türkiye Gönüllü Karbon Piyasaları’nın Değerlendirilmesi, DÜBİTED 10 (2022) 10–25. https://doi.org/10.29130/dubited.1101215.
  • S. Ünsal, The evaluation of the carbon tax implementation within the framework of Green Reconciliation in terms of the EU and Türkiye, Master’s Thesis, Anadolu University, 2023.
  • IPCC Core Writing Team [Calvin et al.], Climate Change 2023: Synthesis Report. Contribution of WGs I–III to the Sixth Assessment Report, H. Lee & J. Romero (eds.), IPCC, Geneva, Switzerland (2023). https://doi.org/10.59327/IPCC/AR6‑9789291691647.
  • M. Whitaker, G.A. Heath, P. O’Donoughue, M. Vorum, Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation, Journal of Industrial Ecology 16 (2012) S53–S72. https://doi.org/10.1111/j.1530-9290.2012.00465.x.
  • N.Y. Amponsah, M. Troldborg, B. Kington, I. Aalders, R.L. Hough, Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations, Renewable and Sustainable Energy Reviews 39 (2014) 461–475. https://doi.org/10.1016/j.rser.2014.07.087.
  • D. Nugent, B.K. Sovacool, Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey, Energy Policy 65 (2014) 229–244. https://doi.org/10.1016/j.enpol.2013.10.048.
  • D. Weisser, A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies, Energy 32 (2007) 1543–1559. https://doi.org/10.1016/j.energy.2007.01.008.
  • A.S.G. Andrae, T. Edler, On Global Electricity Usage of Communication Technology: Trends to 2030, Challenges 6 (2015) 117–157. https://doi.org/10.3390/challe6010117.
  • C. Freitag, M. Berners-Lee, K. Widdicks, B. Knowles, G. Blair, A. Friday, The climate impact of ICT: A review of estimates, trends and regulations, (2021). https://doi.org/10.48550/arXiv.2102.02622.
  • J. Dodge, T. Prewitt, R. Tachet Des Combes, E. Odmark, R. Schwartz, E. Strubell, A.S. Luccioni, N.A. Smith, N. DeCario, W. Buchanan, Measuring the Carbon Intensity of AI in Cloud Instances, in: 2022 ACM Conference on Fairness, Accountability, and Transparency, ACM, Seoul Republic of Korea, 2022, pp. 1877–1894. https://doi.org/10.1145/3531146.3533234.
  • K. Kirkpatrick, The Carbon Footprint of Artificial Intelligence, Commun. ACM 66 (2023) 17–19. https://doi.org/10.1145/3603746.
  • Y. Yu, J. Wang, Y. Liu, P. Yu, D. Wang, P. Zheng, M. Zhang, Revisit the environmental impact of artificial intelligence: the overlooked carbon emission source?, Front. Environ. Sci. Eng. 18 (2024) 158. https://doi.org/10.1007/s11783-024-1918-y.
  • K.S. Cheung, M. Kaul, G. Jahangirova, M.R. Mousavi, E. Zie, Comparative Analysis of Carbon Footprint in Manual vs. LLM-Assisted Code Development, arXiv.Org (2025). https://doi.org/10.1145/3711919.3728678.
  • C. Stoll, L. Klaaßen, U. Gallersdörfer, The Carbon Footprint of Bitcoin, Joule 3 (2019) 1647–1661. https://doi.org/10.1016/j.joule.2019.05.012.
  • J. Grealey, L. Lannelongue, W.-Y. Saw, J. Marten, G. Méric, S. Ruiz-Carmona, M. Inouye, The Carbon Footprint of Bioinformatics, Molecular Biology and Evolution 39 (2022) msac034. https://doi.org/10.1093/molbev/msac034.
  • Y. Lu, Z. Liao, The influence of AI application on carbon emission intensity of industrial enterprises in China, Sci Rep 15 (2025) 12585. https://doi.org/10.1038/s41598-025-97110-3.
  • G.R. Rajendiran, R. Ayyadurai, Reducing E‑Commerce Carbon Footprint Through AI‑Driven Warehouse and Supply Chain Optimization, Reduct. Footprint AI Appl. 9 (2023).
  • H. Ji, W. Bi, J. Yan, S. Wu, H. Han, ICTs-driven Agriculture Contributes to the Mission of Carbon Reduction, in: Interdisciplinary Research in Technology and Management, 1st ed., CRC Press, London, 2024, pp. 453–462. https://doi.org/10.1201/9781003430469-53.
  • A. Andrae, L. Hu, L. Liu, J. Spear, K. Rubel, Delivering Tangible Carbon Emission and Cost Reduction through the ICT Supply Chain, International Journal of Green Technology 3 (2017) 1–10. https://doi.org/10.30634/2414-2077.2017.03.1.
  • B. Tomlinson, R.W. Black, D.J. Patterson, A.W. Torrance, The carbon emissions of writing and illustrating are lower for AI than for humans, Sci Rep 14 (2024) 3732. https://doi.org/10.1038/s41598-024-54271-x.
  • C.A.M. Ajufo, G. Bekaroo, An Automated Personal Carbon Footprint Calculator for Estimating Carbon Emissions from Transportation Use, in: Proceedings of the International Conference on Artificial Intelligence and Its Applications, Association for Computing Machinery, New York, NY, USA, 2021, pp. 1–7. https://doi.org/10.1145/3487923.3487935.
  • S. Wang, F. Tao, Y. Shi, Optimization of Inventory Routing Problem in Refined Oil Logistics with the Perspective of Carbon Tax, Energies 11 (2018) 1437. https://doi.org/10.3390/en11061437.
  • O. Jabali, T.V. VanWoensel, A.G.D. Kok, Analysis of Travel Times and CO2 Emissions in Time‐Dependent Vehicle Routing, Prod. Oper. Manag. 21 (2012) 1060-1074. https://journals.sagepub.com/doi/abs/10.1111/j.1937-5956.2012.01338.x (accessed 20.03.25).
  • W.-H. Tsai, K.-C. Lee, J.-Y. Liu, H.-L. Lin, Y.-W. Chou, S.-J. Lin, A mixed activity-based costing decision model for green airline fleet planning under the constraints of the European Union Emissions Trading Scheme, Energy 39 (2012) 218–226. https://doi.org/10.1016/j.energy.2012.01.027.
  • Booking, <https://www.booking.com/> (accessed 14.05.25).
  • Travalyst, <https://travalyst.org/work/aviation-industry/> (accessed 12.05.25).
  • Skyscanner, <https://www.skyscanner.com.tr/> (accessed 10.04.25).
  • Google Flights, <https://www.google.com/travel/flights> (accessed 22.04.25).
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sürdürülebilir Kalkınma ve Kamu Yararına Bilgi Sistemleri, Bilgi Sistemleri (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Fatih Gençtürk 0000-0001-8557-5572

Serdar Biroğul 0000-0003-4966-5970

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 3 Haziran 2025
Kabul Tarihi 26 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 1

Kaynak Göster

APA Gençtürk, F., & Biroğul, S. (2025). CARBON FOOTPRINT THROUGH THE LENS OF INFORMATION AND COMMUNICATION TECHNOLOGY. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi, 9(1), 118-132. https://doi.org/10.62301/usmtd.1712846
AMA Gençtürk F, Biroğul S. CARBON FOOTPRINT THROUGH THE LENS OF INFORMATION AND COMMUNICATION TECHNOLOGY. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. Haziran 2025;9(1):118-132. doi:10.62301/usmtd.1712846
Chicago Gençtürk, Fatih, ve Serdar Biroğul. “CARBON FOOTPRINT THROUGH THE LENS OF INFORMATION AND COMMUNICATION TECHNOLOGY”. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi 9, sy. 1 (Haziran 2025): 118-32. https://doi.org/10.62301/usmtd.1712846.
EndNote Gençtürk F, Biroğul S (01 Haziran 2025) CARBON FOOTPRINT THROUGH THE LENS OF INFORMATION AND COMMUNICATION TECHNOLOGY. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi 9 1 118–132.
IEEE F. Gençtürk ve S. Biroğul, “CARBON FOOTPRINT THROUGH THE LENS OF INFORMATION AND COMMUNICATION TECHNOLOGY”, Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi, c. 9, sy. 1, ss. 118–132, 2025, doi: 10.62301/usmtd.1712846.
ISNAD Gençtürk, Fatih - Biroğul, Serdar. “CARBON FOOTPRINT THROUGH THE LENS OF INFORMATION AND COMMUNICATION TECHNOLOGY”. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi 9/1 (Haziran2025), 118-132. https://doi.org/10.62301/usmtd.1712846.
JAMA Gençtürk F, Biroğul S. CARBON FOOTPRINT THROUGH THE LENS OF INFORMATION AND COMMUNICATION TECHNOLOGY. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. 2025;9:118–132.
MLA Gençtürk, Fatih ve Serdar Biroğul. “CARBON FOOTPRINT THROUGH THE LENS OF INFORMATION AND COMMUNICATION TECHNOLOGY”. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi, c. 9, sy. 1, 2025, ss. 118-32, doi:10.62301/usmtd.1712846.
Vancouver Gençtürk F, Biroğul S. CARBON FOOTPRINT THROUGH THE LENS OF INFORMATION AND COMMUNICATION TECHNOLOGY. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. 2025;9(1):118-32.