Araştırma Makalesi
BibTex RIS Kaynak Göster

Fantom dokuda ultrasonik sinyal karakterizasyonunun sıcaklık bağımlılığı üzerine deneysel bir araştırma

Yıl 2025, Cilt: 17 Sayı: 2, 28 - 35, 29.12.2025
https://doi.org/10.55974/utbd.1673381

Öz

Yüksek yoğunluklu ultrasonik ısıtma, omik ısıtma, mikrodalga ısıtma, radyofrekans gibi çeşitli yöntemler kullanılan termal ablasyon teknikleri, tümör dokularını etkili bir şekilde yok etmede umut vaat etmektedir. Öte yandan, termal terapi sırasında hedef bölgenin içinde ve çevresinde anlık sıcaklık ölçümü yapılması, bu tür tedavilerin uygulanmasını kolaylaştıracaktır. Dokularda sıcaklık değişiminin anlık olarak belirlenmesi için kullanılabilecek bir yöntem, sıcaklık değişiminin hedefe gönderilen ultrason sinyallerinin değişiminden hareketle hesaplanmasıdır. Bu yöntemde, ses hızının ve uçuş süresinin değişiminden hareketle tersine olarak doku içerisindeki sıcaklık değişimi hesaplanır. Ancak doku içersindeki safsızlıklar ve gürültü, hedef bölgeden dönen sinyaldeki değişimin izlenmesini zorlaştırmaktadır. Bu çalışmada, doku benzeri malzeme olarak silikajel ve silisyum dioksit katkılı agar fantomlar hazırlanmıştır. Hazırlanan fantomlar su banyosu içine daldırılarak ısıtma yapılmış ve fantom içindeki sıcaklık değişimleri daldırmalı sensörler kullanılarak ölçülmüştür. Diğer yandan, işlem süresi boyunca fantom yapıya ultrasonik sinyaller gönderilerek dönüş sinyallerindeki değişim gözlenmiştir. Sinyallerdeki değişimlerin işlenmesi ile elde edilen sonuçlar, uçuş süresindeki değişimin fantom içerisindeki sıcaklık değişimini belirlemek için kullanılabileceğini göstermektedir.

Kaynakça

  • Carovac A, Smajlovic F, Junuzovic D. Application of ultrasound in medicine. Acta Informatica Medica, 19(3), 168, 2011. https://doi.org/10.5455/aim.2011.19.168-171
  • Hyperthermia to treat cancer. National Cancer Institute. https://www.cancer.gov/aboutcancer/treatment/types/hyperthermia#:~:text=Hyperthermia%20is%20a%20type%20of,%2C%20thermal%20ablation%2C%20or%20thermotherapy.
  • Fani F, Schena E, Saccomandi P, Silvestri S. CT-based thermometry: an overview. International Journal of Hyperthermia, 30(4), 219-227, 2014. https://doi.org/10.3109/02656736.2014.922221
  • Lewis MA, Staruch RM, Chopra R. Thermometry and ablation monitoring with ultrasound. International Journal of Hyperthermia, 31(2), 163-181, 2015. https://doi.org/10.3109/02656736.2015.1009180
  • Tsujimoto Y, Matsuda D, Minamiguchi K, Tanaka T, Hirai T, Akiyama I. Measurement of temperature dependence of sound velocity in biological tissues. Japanese Journal of Applied Physics, 58(SG), SGGE01, 2019. https://doi.org/10.7567/1347-4065/ab12cb
  • Simon C, VanBaren P, Ebbini E. Quantitative analysis and applications of non-invasive temperature estimation using diagnostic ultrasound. IEEE Ultrasonics Symposium Proceedings, 1319-1322, 1997. https://doi.org/10.1109/ULTSYM.1997.661819,
  • Zeng, W., Krueger, C. J., & Dai, Z. (2018). Ultrasonic thermal strain imaging for noninvasive temperature estimation in tissue. Advanced Ultrasound in Diagnosis and Therapy, 2(2), 71–81. https://doi.org/10.37015/AUDT.2018.180803
  • O. Georg and V. Wilkens, “Non-invasive estimation of temperature using diagnostic ultrasound during HIFU therapy,” AIP Conference Proceedings, vol. 1816, p. 040002, 2017, doi: 10.1063/1.4976597.
  • Park S, Hwang J, Park JE, Ahn YC, Kang HW. Application of ultrasound thermal imaging for monitoring laser ablation in ex vivo cardiac tissue. Lasers in Surgery and Medicine, 52(3), 218-227, 2020. https://doi.org/10.1002/lsm.23157
  • Lee J, Lee S, Kang J, Kang HW. Ultrasound temperature estimation for drug delivery monitoring using a commercial ultrasound imaging device. Ultrasonics, 93, 105-113, 2019.
  • Daniels, M. J., Jiang, J., & Varghese, T. (2008). Ultrasound simulation of real-time temperature estimation during radiofrequency ablation using finite element models. Ultrasonics, 48(1), 40–55. https://doi.org/10.1016/j.ultras.2007.10.005
  • Cetin Ari E, Durmuş H, Karaböce B, Kavakli N. Acoustical characterization of tissue-mimicking materials. 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA), 1-5, 2019. https://doi.org/10.1109/MeMeA.2019.8802203
  • Simon C, VanBaren P, Ebbini ES. Two dimensional temperature estimation using diagnostic ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 45(4), 1088-1099, 1998. https://doi.org/10.1109/58.710592

An Experimental investigation on the temperature dependence of ultrasonic signal characterization in a phantom tissue

Yıl 2025, Cilt: 17 Sayı: 2, 28 - 35, 29.12.2025
https://doi.org/10.55974/utbd.1673381

Öz

Thermal ablation techniques, which use various methods such as high-intensity ultrasonic heating, ohmic heating, microwave heating, and radiofrequency, are promising in effectively destroying tumor tissues. On the other hand, instantaneous temperature measurement in and around the target area during thermal therapy will facilitate the application of such treatments. A method for instantly determining temperature changes in tissues based on the change in ultrasound signals sent to the target. In this method, the temperature change in the tissue is calculated inversely based on the change in the speed of sound and the duration of flight. However, impurities and noise in the tissue make it difficult to monitor the change in the signal returning from the target area. In this study, silica gel- and silicon dioxide-added agar phantoms were prepared as tissue-like materials. The prepared phantoms were immersed in a water bath and heated, and the temperature changes in the phantom were measured using immersion sensors. On the other hand, ultrasonic signals were sent to the phantom structure throughout the process, and the changes in the return signals were observed. The results obtained by processing the changes in the signals show that the change in flight time can be used to determine the temperature change inside the phantom.

Kaynakça

  • Carovac A, Smajlovic F, Junuzovic D. Application of ultrasound in medicine. Acta Informatica Medica, 19(3), 168, 2011. https://doi.org/10.5455/aim.2011.19.168-171
  • Hyperthermia to treat cancer. National Cancer Institute. https://www.cancer.gov/aboutcancer/treatment/types/hyperthermia#:~:text=Hyperthermia%20is%20a%20type%20of,%2C%20thermal%20ablation%2C%20or%20thermotherapy.
  • Fani F, Schena E, Saccomandi P, Silvestri S. CT-based thermometry: an overview. International Journal of Hyperthermia, 30(4), 219-227, 2014. https://doi.org/10.3109/02656736.2014.922221
  • Lewis MA, Staruch RM, Chopra R. Thermometry and ablation monitoring with ultrasound. International Journal of Hyperthermia, 31(2), 163-181, 2015. https://doi.org/10.3109/02656736.2015.1009180
  • Tsujimoto Y, Matsuda D, Minamiguchi K, Tanaka T, Hirai T, Akiyama I. Measurement of temperature dependence of sound velocity in biological tissues. Japanese Journal of Applied Physics, 58(SG), SGGE01, 2019. https://doi.org/10.7567/1347-4065/ab12cb
  • Simon C, VanBaren P, Ebbini E. Quantitative analysis and applications of non-invasive temperature estimation using diagnostic ultrasound. IEEE Ultrasonics Symposium Proceedings, 1319-1322, 1997. https://doi.org/10.1109/ULTSYM.1997.661819,
  • Zeng, W., Krueger, C. J., & Dai, Z. (2018). Ultrasonic thermal strain imaging for noninvasive temperature estimation in tissue. Advanced Ultrasound in Diagnosis and Therapy, 2(2), 71–81. https://doi.org/10.37015/AUDT.2018.180803
  • O. Georg and V. Wilkens, “Non-invasive estimation of temperature using diagnostic ultrasound during HIFU therapy,” AIP Conference Proceedings, vol. 1816, p. 040002, 2017, doi: 10.1063/1.4976597.
  • Park S, Hwang J, Park JE, Ahn YC, Kang HW. Application of ultrasound thermal imaging for monitoring laser ablation in ex vivo cardiac tissue. Lasers in Surgery and Medicine, 52(3), 218-227, 2020. https://doi.org/10.1002/lsm.23157
  • Lee J, Lee S, Kang J, Kang HW. Ultrasound temperature estimation for drug delivery monitoring using a commercial ultrasound imaging device. Ultrasonics, 93, 105-113, 2019.
  • Daniels, M. J., Jiang, J., & Varghese, T. (2008). Ultrasound simulation of real-time temperature estimation during radiofrequency ablation using finite element models. Ultrasonics, 48(1), 40–55. https://doi.org/10.1016/j.ultras.2007.10.005
  • Cetin Ari E, Durmuş H, Karaböce B, Kavakli N. Acoustical characterization of tissue-mimicking materials. 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA), 1-5, 2019. https://doi.org/10.1109/MeMeA.2019.8802203
  • Simon C, VanBaren P, Ebbini ES. Two dimensional temperature estimation using diagnostic ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 45(4), 1088-1099, 1998. https://doi.org/10.1109/58.710592
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Esra Demirkıran 0009-0002-3913-1369

Serhan Küçüka 0000-0002-2281-561X

Gönderilme Tarihi 10 Nisan 2025
Kabul Tarihi 22 Aralık 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 17 Sayı: 2

Kaynak Göster

IEEE E. Demirkıran ve S. Küçüka, “An Experimental investigation on the temperature dependence of ultrasonic signal characterization in a phantom tissue”, UTBD, c. 17, sy. 2, ss. 28–35, 2025, doi: 10.55974/utbd.1673381.

Dergi isminin Türkçe kısaltması "UTBD" ingilizce kısaltması "IJTS" şeklindedir.

Dergimizde yayınlanan makalelerin tüm bilimsel sorumluluğu yazar(lar)a aittir. Editör, yardımcı editör ve yayıncı dergide yayınlanan yazılar için herhangi bir sorumluluk kabul etmez.