BibTex RIS Kaynak Göster

DALGAKILAVUZU ILE BESLENEN BIR REZONATÖRDE MALZEME KONUMUNUN VE BÜYÜKLÜĞÜNÜN ANALIZI

Yıl 2016, Cilt: 21 Sayı: 1, 163 - 176, 13.05.2016

Öz

Bir mikrodalga rezonatöründe elektrik alan dağılımını dolayısıyla ısı dağılımını etkileyen temel faktörler, rezonatörün boyutları, ısıtma frekansı, ısıtılacak malzemenin şekli ve dielektrik özellikleri, ısıtılacak malzemenin fırın içindeki konumu, besleme kılavuzunun rezonatör üzerindeki konumu şeklinde sıralanabilir. Bu çalışmada ısıtmaya direk etki eden bu faktörlerden malzeme kalınlığı incelenmiştir. Çalışmanın amacı yansıma katsayısını minimize edecek malzeme kalınlığının bulunmasıdır. Mod denkleştirme yöntemiyle bulunan sonuçların doğruluğu Ansoft HFSS ile elde edilen sonuçlarla karşılaştırılarak ispatlanmıştır.

 

Kaynakça

  • REFERENCES
  • Dibben, D.C. and Metaxas, A.C. (1996) Time domain finite element analysis of multimode microwave applicators loaded with low and high loss materials, IEEE Microwave and Guided Letters, 32, 945-948.
  • Hallac A. and Metaxas A.C. (2003) Finite element time domain analysis of microwave heating applicators using higher order vector finite elements, International Conference on Microwave and High Frequency Heating, UK, 21-25.
  • Iskander, M.F., Smith, R.L., Octavio, A., Andrade, M., Kimrey, H. and Walsh, L.M. (1994) FDTD simulation of microwave sintering of ceramics in multimode cavities, IEEE Transactions on Microwave Theory and Tecniques, 42(5), 1686-1689.
  • doi: 10.1109/22.293527
  • Jia, X. (1993) Experimental and numerical study of microwave power distributions in a microwave heating applicator, Journal of Microwave Power and Elecromagnetic Energy, 28 (1), 25-31.
  • Liu, F., Turner I. and Bialkowski, M. A. (1994) A Finite difference time domain simulation of power density distribution in a dielectric loaded microwave cavity, Journal of Microwave Power and Electromagnetic Energy, 29(3), 138-148.
  • Liu, F., Turner, I., Siores, E. and Groombridge, P. (1996) A numerical and experimental investigation of the microwave heating of polymer materials inside a ridge waveguide, Journal of Microwave Power and Electromagnetic Energy, 31(2), 71-82.
  • Monzo-Cabrera, J., Diaz-Morcillo, A., Pedreno-Molina, J. L. and Sanchez-Hernandez, D. (2004) A new method for load matching in multimode-microwave heating applicators based on the use of dielectric-layer superposition, Microwave and Optıcal Technology Letters, 40(4), 318-322.
  • doi: 10.1002/mop.11367
  • Monzo-Cabrera, J., Escalante, J., Dıaz-Morcillo, A., Martınez-Gonzalez, A. and Sanchez-Hernandez, D. (2004) Load matching in multimode microwave-heating applicators based on the use of dielectric layer moulding with commercial materials, Microwave and Optical Technology Letters, 41(5), 414-417.
  • doi: 10.1002/mop.20156
  • Pedreno-Molina, J. L., Monzo-Cabrera, J. and Catala–Civera, J. M. (2006) Sample movement optimization for uniform heating in microwave heating ovens, International Journal of RF and Microwave Computer-Aided Engineering, 142-152.
  • doi: 10.1002/mmce.20208
  • Plaza-González, P., Monzó-Cabrera, J., Catalá-Civera, J. M. and Sánchez-Hernández, D. (2004) New approach for the prediction of the electric field distribution in multimode microwave-heating applicators with mode stirrers, IEEE Transactions on Magnetics, 40(3), 1672-1678. doi:10.1109/TMAG.2003.821560
  • Plaza-González, P., Monzó-Cabrera, J., Catalá-Civera, J. M., and Sánchez-Hernández, D. (2005) Effect of mode-stirrer configurations on dielectric heating performance in multimode microwave applicators, IEEE Transactions on Microwave Theory and Techniques, 53(5), 1699-1706.
  • doi:10.1109/TMTT.2005.847066
  • Reader, H.C. and Chow Ting Chan, T.V. (1998) Experimental and numerical field studies in loaded multimode and single mode cavities, Journal of Microwave Power and Elecromagnetic Energy, 33(2), 256-263.
  • Requena-Perez, M. E., Pedreno-Molina, J. L., Pinzolas-Prado, M., Monzo-Cabrera, J., Diaz-Morcillo, A. and Sanchez-Hernandez, D. (2004) Load matching in multimode microwave-heating applicators by load location optimization, 34" European Microwave Conference, Amsterdam, Holland.
  • Süle, O. and Kent, S. (2010) Analysis of microwave cavity loaded with lossy dielectric slab by means of mode matching method and optimization of load location’, PIER M, 14, 71-83. doi:10.2528/PIERM10061707
  • Sunberg, M., Risman, P.O., Kildal, P.S. and Ohlsson, T. (1996) Analysis and design of industrial microwave ovens using the finite difference time domain method, Journal of Microwave Power and Elecromagnetic Energy, 31(3), 142-157.
  • Terril, N. D. (1998) Field simulation for the microwave heating of thin ceramic fibers. MSc. thesis, State University.
  • Zhao, H. and Turner, I.W. (1996) An analysis of the finite difference time domain method for modelling the microwave heating of dielectric materials within a three dimensional cavity system, Journal of Microwave Power and Electromagnetic Energy, 31(4), 199-214.

Analysis of Material Position and Size in a Waveguide Fed Resonator

Yıl 2016, Cilt: 21 Sayı: 1, 163 - 176, 13.05.2016

Öz

The main factors that affect electric field distribution, and therefore heat distribution, are the dimensions of the resonator, heating frequency, shape and dielectric properties of the material to be heated, position of the material to be heated within the resonator and the position of the feed guide on the resonator. From among these factors that directly affect heating, this work examined the material thickness. The purpose of this study was to determine the material thickness that will minimise the reflection coefficient. The accuracy of the results obtained by means of the mode matching method was demonstrated by comparing those results with the results obtained through Ansoft’s High Frequency Structure Simulator.

 

 

Kaynakça

  • REFERENCES
  • Dibben, D.C. and Metaxas, A.C. (1996) Time domain finite element analysis of multimode microwave applicators loaded with low and high loss materials, IEEE Microwave and Guided Letters, 32, 945-948.
  • Hallac A. and Metaxas A.C. (2003) Finite element time domain analysis of microwave heating applicators using higher order vector finite elements, International Conference on Microwave and High Frequency Heating, UK, 21-25.
  • Iskander, M.F., Smith, R.L., Octavio, A., Andrade, M., Kimrey, H. and Walsh, L.M. (1994) FDTD simulation of microwave sintering of ceramics in multimode cavities, IEEE Transactions on Microwave Theory and Tecniques, 42(5), 1686-1689.
  • doi: 10.1109/22.293527
  • Jia, X. (1993) Experimental and numerical study of microwave power distributions in a microwave heating applicator, Journal of Microwave Power and Elecromagnetic Energy, 28 (1), 25-31.
  • Liu, F., Turner I. and Bialkowski, M. A. (1994) A Finite difference time domain simulation of power density distribution in a dielectric loaded microwave cavity, Journal of Microwave Power and Electromagnetic Energy, 29(3), 138-148.
  • Liu, F., Turner, I., Siores, E. and Groombridge, P. (1996) A numerical and experimental investigation of the microwave heating of polymer materials inside a ridge waveguide, Journal of Microwave Power and Electromagnetic Energy, 31(2), 71-82.
  • Monzo-Cabrera, J., Diaz-Morcillo, A., Pedreno-Molina, J. L. and Sanchez-Hernandez, D. (2004) A new method for load matching in multimode-microwave heating applicators based on the use of dielectric-layer superposition, Microwave and Optıcal Technology Letters, 40(4), 318-322.
  • doi: 10.1002/mop.11367
  • Monzo-Cabrera, J., Escalante, J., Dıaz-Morcillo, A., Martınez-Gonzalez, A. and Sanchez-Hernandez, D. (2004) Load matching in multimode microwave-heating applicators based on the use of dielectric layer moulding with commercial materials, Microwave and Optical Technology Letters, 41(5), 414-417.
  • doi: 10.1002/mop.20156
  • Pedreno-Molina, J. L., Monzo-Cabrera, J. and Catala–Civera, J. M. (2006) Sample movement optimization for uniform heating in microwave heating ovens, International Journal of RF and Microwave Computer-Aided Engineering, 142-152.
  • doi: 10.1002/mmce.20208
  • Plaza-González, P., Monzó-Cabrera, J., Catalá-Civera, J. M. and Sánchez-Hernández, D. (2004) New approach for the prediction of the electric field distribution in multimode microwave-heating applicators with mode stirrers, IEEE Transactions on Magnetics, 40(3), 1672-1678. doi:10.1109/TMAG.2003.821560
  • Plaza-González, P., Monzó-Cabrera, J., Catalá-Civera, J. M., and Sánchez-Hernández, D. (2005) Effect of mode-stirrer configurations on dielectric heating performance in multimode microwave applicators, IEEE Transactions on Microwave Theory and Techniques, 53(5), 1699-1706.
  • doi:10.1109/TMTT.2005.847066
  • Reader, H.C. and Chow Ting Chan, T.V. (1998) Experimental and numerical field studies in loaded multimode and single mode cavities, Journal of Microwave Power and Elecromagnetic Energy, 33(2), 256-263.
  • Requena-Perez, M. E., Pedreno-Molina, J. L., Pinzolas-Prado, M., Monzo-Cabrera, J., Diaz-Morcillo, A. and Sanchez-Hernandez, D. (2004) Load matching in multimode microwave-heating applicators by load location optimization, 34" European Microwave Conference, Amsterdam, Holland.
  • Süle, O. and Kent, S. (2010) Analysis of microwave cavity loaded with lossy dielectric slab by means of mode matching method and optimization of load location’, PIER M, 14, 71-83. doi:10.2528/PIERM10061707
  • Sunberg, M., Risman, P.O., Kildal, P.S. and Ohlsson, T. (1996) Analysis and design of industrial microwave ovens using the finite difference time domain method, Journal of Microwave Power and Elecromagnetic Energy, 31(3), 142-157.
  • Terril, N. D. (1998) Field simulation for the microwave heating of thin ceramic fibers. MSc. thesis, State University.
  • Zhao, H. and Turner, I.W. (1996) An analysis of the finite difference time domain method for modelling the microwave heating of dielectric materials within a three dimensional cavity system, Journal of Microwave Power and Electromagnetic Energy, 31(4), 199-214.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makaleleri
Yazarlar

Okan Süle

Sedef Kent

Yayımlanma Tarihi 13 Mayıs 2016
Gönderilme Tarihi 2 Temmuz 2015
Yayımlandığı Sayı Yıl 2016 Cilt: 21 Sayı: 1

Kaynak Göster

APA Süle, O., & Kent, S. (2016). Analysis of Material Position and Size in a Waveguide Fed Resonator. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 21(1), 163-176. https://doi.org/10.17482/uujfe.67205
AMA Süle O, Kent S. Analysis of Material Position and Size in a Waveguide Fed Resonator. UUJFE. Nisan 2016;21(1):163-176. doi:10.17482/uujfe.67205
Chicago Süle, Okan, ve Sedef Kent. “Analysis of Material Position and Size in a Waveguide Fed Resonator”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 21, sy. 1 (Nisan 2016): 163-76. https://doi.org/10.17482/uujfe.67205.
EndNote Süle O, Kent S (01 Nisan 2016) Analysis of Material Position and Size in a Waveguide Fed Resonator. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 21 1 163–176.
IEEE O. Süle ve S. Kent, “Analysis of Material Position and Size in a Waveguide Fed Resonator”, UUJFE, c. 21, sy. 1, ss. 163–176, 2016, doi: 10.17482/uujfe.67205.
ISNAD Süle, Okan - Kent, Sedef. “Analysis of Material Position and Size in a Waveguide Fed Resonator”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 21/1 (Nisan 2016), 163-176. https://doi.org/10.17482/uujfe.67205.
JAMA Süle O, Kent S. Analysis of Material Position and Size in a Waveguide Fed Resonator. UUJFE. 2016;21:163–176.
MLA Süle, Okan ve Sedef Kent. “Analysis of Material Position and Size in a Waveguide Fed Resonator”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 21, sy. 1, 2016, ss. 163-76, doi:10.17482/uujfe.67205.
Vancouver Süle O, Kent S. Analysis of Material Position and Size in a Waveguide Fed Resonator. UUJFE. 2016;21(1):163-76.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr