Araştırma Makalesi
BibTex RIS Kaynak Göster

SİLİKON YUMUŞATICILARIN PAMUK VE VİSKON ÖRME KUMAŞLAR ÜZERİNDE ETKİLERİ

Yıl 2020, Cilt: 25 Sayı: 2, 941 - 960, 31.08.2020
https://doi.org/10.17482/uumfd.660283

Öz

Kumaşların tutumunu, görünümünü ve kullanım özelliklerini geliştirmek için yumuşaklık bitim işlemleri uygulanır. Kullanılacak yumuşatıcının seçimi, lif ve kumaş yapısı dikkate alınarak yapılmalıdır. Tekstil uygulamalarında en çok kullanılan yumuşatıcı tipi, silikon yumuşatıcılardır. Bu çalışmada, makro ve mikro silikonlu yumuşatıcıların selüloz esaslı örme kumaşlar üzerindeki görünüm, fiziksel ve konfor etkileri incelenmiştir. Bu amaçla, süprem ve iki iplik örgü tiplerindeki pamuk ve viskon boyanmış kumaşlara emdirmekurutma yöntemi yardımıyla makro ve mikro silikon yumuşatıcılar uygulanmıştır. İşlemler sonrası kumaşların renk değişimi, patlama mukavemeti, hava geçirgenliği ve ısıl özellik değerleri test edilerek sonuçlar karşılaştırılmıştır. Araştırma sonucunda, makro ve mikro silikon yumuşatıcıların toplam renk farkı değerleri kabul edilebilir sınırlar içinde olduğu tespit edilmiştir. Her iki yumuşatıcı ile işlem sonrası patlama mukavemeti ve hava geçirgenliği değerleri azalmıştır. Patlama mukavemetindeki kayıp, özellikle pamuk kumaşlarda ve makro silikon uygulamalarında daha fazladır. Makro silikon yumuşatıcı, kumaşların uzama özelliklerine katkı sağlamasına karşın, hava geçirgenliği değerlerinde daha fazla azalmaya neden olmuştur. Boyama ve silikon uygulamaları sonrası kumaş sıklığının azalması ve bünyesinde daha az hava tutar hale gelmesinden dolayı ısıl iletkenlik değerlerinin arttığı görülmüştür. Makro silikon uygulamaları sonrası ısıl iletkenlik ve kalınlık değerleri, daha yüksek ölçülmüştür. Selülozik kumaş özellikleri göz önüne alındığında, mikro silikon yumuşatıcının kullanılması önerilmektedir

Teşekkür

Bu çalışma Uludağ Üniversitesi Fen Bilimleri Enstitüsü Tekstil Mühendisliği Anabilim Dalı’nda yapılan Yüksek Lisans Tezinin bir bölümüdür.

Kaynakça

  • 1. Atav, R.A., Korkmaz, A., Arabacı, P., Kumbasar, T.Ö., Yurdakul, A. (2003) Boyama sonrası kullanılan yardımcı maddelerin haslıklara etkisi, Tekstil Teknolojisi ve Kimyasındaki Son Gelişmeler Sempozyumu 9, Bursa, 125-147.
  • 2. Bereck, A., Riegel, D., Kuna, C., Rant, C. (1993) Influence of silicone softeners on textile handle and mechanical properties, Melliand Textilberichte International Textile Reports, 74(1), E 416.
  • 3. Bereck, A., Dillbohner, S., Weber, B., Riegel, D., Mosel, J., Reper, J.M., Brakelmann, A. (1997) A simple method for the objective characterisation of fabric softness. part 1: influence of bleaching, dyeing and crosslinking of wool, Journal of the Society of Dyers and Colourists, 113(11), 322-326. doi: 10.1111/j.1478-4408.1997.tb01853.x.
  • 4. Bereck, A., Riegel, D., Matzat, A., Habereder, P., Lautenschlager, H. (2001) Silicones on fibrous substrates: their mode of action, AATCC Review, 1(1), 45-49.
  • 5. Chattopadhyay, D., Vyas, D. (2010) Effect of silicone nano-emulsion softener on physical properties of cotton fabric, Indian Journal of Fibre and Textile Research, 35(1), 68-71.
  • 6. Cheng, S., Yuen, C., Kan, C., Cheuk, K., Tang, J. (2010) Systematic characterization of cosmetic textiles, Textile Research Journal, 80(6), 524-536. doi: 10.1177/0040517509338309.
  • 7. Cimilli, S., Nergis, B., Candan, C., Özdemir, M. (2010) A comparative study of some comfort-related properties of socks of different fiber types, Textile Research Journal, 80(10), 948-957. doi: 10.1177/0040517509349782.
  • 8. Choudhury, A.R., Chatterjee, B., Saha, S., Shaw, K. (2012) Comparison of performances of macro, micro and nano silicone softeners, Journal of the Textile Institute, 103(9), 1012-1023. doi:10.1080/00405000.2012.654666.
  • 9. Çoban, S. (1999) Bitim işlemlerinde yumuşak tutum ve yumuşatıcı maddeler, Tekstil ve Konfeksiyon, 167-173.
  • 10. Eryürük, S. (2004) Polar kumaşların konfor özelliklerinin incelenmesi, Örme-İhtisas, 2(7), 38-42.
  • 11. Frydrych, I., Dziworska, G., Bilska, J. (2002) Comparative analysis of the thermal insulation properties of fabrics made of natural and man-made cellulose fibres, Fibres and Textiles in Eastern Europe, 10(4), 40-44.
  • 12. Guanxiong, Q., Yuan, Z., Zhongwei, W., Jianli, L., Min, L., Jie, Z. (1991) Comfort in knitted fabrics, International Man-Made Fibres Congress Proceeding, 112, Dornbirn.
  • 13. Gülsevin, N. (2005) Spor giysilerin konfor özellikleri üzerine bir araştırma, Yüksek Lisans Tezi, Ege Üniversitesi, İzmir.
  • 14. Habereder, P., Bereck, A. (2002) Part 2: Silicone softeners, J Review of Progress in Coloration, 32(1), 125-137. doi: 10.1111/j.1478-4408.2002.tb00256.x.
  • 15. Hardt, P. (1984) Silicon textile auxiliaries, Textilveredlung, 19(5), 143-146.
  • 16. Hashem, M., Ibrahim, N.A., El-Shafei, A., Refaie, R., Hauser, P. (2009) An eco-friendly–novel approach for attaining wrinkle–free/soft-hand cotton fabric, Carbohydrate Polymers, 78(4), 690-703. doi: 0.1016/j.carbpol.2009.06.004.
  • 17. Havenith, G. (2002) The interaction of clothing and thermoregulation, Exogenous Dermatology, 1(5), 221-230. doi: 10.1159/000068802.
  • 18. Islam, M.M., Islam, A., Huiyu, J. (2015) Silicone softener synthesis and application on knit and woven white cotton fabrics, American Journal of Polymer Science & Engineering, 3(1), 129-138.
  • 19. Jatoi, A.W., Khatri, Z., Ahmed, F., Memon, M.H. (2015) Effect of silicone nano, nano/micro and nano/macro-emulsion softeners on color yield and physical characteristics of dyed cotton fabric, Journal of Surfactants and Detergents, 18(2), 205-211. doi:10.1007/s11743-014-1647-5.
  • 20. Jun, Y., Kang, Y., Park, C., Choi, C. (2002) Evaluation of textile performance of soccer wear, Textile Asia, 33(5), 43-44.
  • 21. Jun, Y., Park, C.H., Shim, H., Kang, T.J. (2009) Thermal comfort properties of wearing caps from various textiles, Textile Research Journal, 79(2), 179-189. doi: 10.1177/0040517508093444.
  • 22. Koerner, G., Schulze, M., Weis, J. (1989) Silicone chemie und technologie, Essen, Germany.
  • 23. Kut, D., Günesoğlu, C., Orhan, M. (2005) Determining suitable softener type for 100% pet woven fabric, AATCC Review, 5(5), 16-19.
  • 24. Lautenschlager, H.-J., Bindl, J., Huhn, K. (1993) Structural correlations for amino-functional silicone softeners: alkylation and acylation for changing the property profile, Textil Praxis International, 48(5), 438-442.
  • 25. Lautenschlager, H., Bindl, J., Huhn, K. (1995) Structure activity relationships of aminofunctional siloxanes as components in softening finishes, Textile Chemist & Colorist, 27(3), 27-29.
  • 26. Matusiak, M. (2006) Investigation of the thermal insulation properties of multilayer textiles, Fibres & Textiles in Eastern Europe, 14(5), 98-102.
  • 27. Oğlakcioğlu, N., Marmaralı, A. (2007) Thermal comfort properties of some knitted structures, Fibres & Textiles in Eastern Europe, 15(5-6), 64-65.
  • 28. Oğlakcıoğlu, N., Marmaralı, A. (2010) Rejenere selüloz liflerinin kompresyon çoraplarının isıl konfor özelliklerine, Tekstil ve Mühendis, 17(77), 6-12.
  • 29. Parvinzadeh, M. (2007) The Effects of softeners on the properties of sulfur‐dyed cotton fibers, Journal of Surfactants and Detergents, 10(4), 219-223. doi: 10.1007/s11743-007-1034-6.
  • 30. Paul, R. (2015) Functional finishes for textiles: improving comfort, performance and protection, Elsevier, Cambridge, UK. doi: 10.1016/C2013-0-16373-8.
  • 31. Schindler, W.D., Hauser, P.J. (2004) Chemical finishing of textiles, Elsevier, Boca Raton, Florida.
  • 32. Shin, Y., Yoo, D.I., Son, K. (2005) Development of thermoregulating textile materials with microencapsulated phase change materials (pcm). IV. performance properties and hand of fabrics treated with pcm microcapsules, Journal of Applied Polymer Science, 97(3), 910-915. doi: 10.1002/app.21846.
  • 33. Son, K., Yoo, D., Shin, Y. (2014) Fixation of vitamin e microcapsules on dyed cotton fabrics, Chemical Engineering Journal, 239(3), 284-289. doi: 10.1016/j.cej.2013.11.034.
  • 34. Stanković, S.B., Popović, D., Poparić, G.B. (2008) Thermal properties of textile fabrics made of natural and regenerated cellulose fibers, Polymer Testing, 27(1), 41-48. doi: 10.1016/j.polymertesting.2007.08.003.
  • 35. Ucar, N., Yilmaz, T. (2004) Thermal properties of 1x1, 2x2, 3x3 rib knit fabrics, Fibres & Textiles in Eastern Europe, 12(3), 34-38.
  • 36. Weber, R. (1999) New aspects in softening, CHTR Beitlich, Tubingen, Germany.
  • 37. Wei, Y., Zheng, C., Chen, P., Yu, Q., Mao, T., Lin, J., Liu, L. (2019) Synthesis of multiblock linear polyether functional amino silicone softener and its modification of surface properties on cotton fabrics, Polymer Bulletin, 76(1), 447-467. doi: 10.1007/s00289-018-2375-1.
  • 38. Zia, K.M., Tabassum, S., Barkaat-ul-Hasin, S., Zuber, M., Jamil, T., Jamal, M.A. (2011) Preparation of rich handles soft cellulosic fabric using amino silicone based softener. part-i: surface smoothness and softness properties, International Journal of Biological Macromolecules, 48(3), 482-487. doi: 10.1016/j.ijbiomac.2011.01.011.

Effects of Silicone Softeners on Cotton and Viscose Knitted Fabrics

Yıl 2020, Cilt: 25 Sayı: 2, 941 - 960, 31.08.2020
https://doi.org/10.17482/uumfd.660283

Öz

Softeners are applied to improve the handle, appearance, and usage characteristics of the fabrics. The softener should be selected by considering fiber and fabric structure. The most used type of softener in textile applications is silicone softeners. In this study, the effects of macro and micro silicon softeners were investigated on the comfort, appearance and physical effects of cellulose-based knitted fabrics. For this purpose, macro and micro silicone softeners were applied to cotton and viscose dyed fabrics such as single jersey and two-ply futter by the pad-dry method. After the treatments, color change, burst strength, air permeability, and thermal properties were tested and then compared. For both fabrics, color difference values of both micro and macro silicone softeners are within acceptable limits. The burst strength and air permeability values also decreased for all fabrics after softener applications. Loss in burst strength was higher, especially in cotton and macro silicone applications. Macro silicon softener contributed to the elongation properties of fabrics, but caused a further decrease in air permeability values. Macro silicone softeners have lower air permeability values because they form a film layer on surfaces. It was observed that the thermal conductivity values increased after dyeing and finishing processes because of the decrease in fabric density and less air in the fabric. The thickness and thermal conductivity values were measured higher after macro silicones. Finally, it is recommended to use the micro silicone softener considering cellulosic fabric properties.

Kaynakça

  • 1. Atav, R.A., Korkmaz, A., Arabacı, P., Kumbasar, T.Ö., Yurdakul, A. (2003) Boyama sonrası kullanılan yardımcı maddelerin haslıklara etkisi, Tekstil Teknolojisi ve Kimyasındaki Son Gelişmeler Sempozyumu 9, Bursa, 125-147.
  • 2. Bereck, A., Riegel, D., Kuna, C., Rant, C. (1993) Influence of silicone softeners on textile handle and mechanical properties, Melliand Textilberichte International Textile Reports, 74(1), E 416.
  • 3. Bereck, A., Dillbohner, S., Weber, B., Riegel, D., Mosel, J., Reper, J.M., Brakelmann, A. (1997) A simple method for the objective characterisation of fabric softness. part 1: influence of bleaching, dyeing and crosslinking of wool, Journal of the Society of Dyers and Colourists, 113(11), 322-326. doi: 10.1111/j.1478-4408.1997.tb01853.x.
  • 4. Bereck, A., Riegel, D., Matzat, A., Habereder, P., Lautenschlager, H. (2001) Silicones on fibrous substrates: their mode of action, AATCC Review, 1(1), 45-49.
  • 5. Chattopadhyay, D., Vyas, D. (2010) Effect of silicone nano-emulsion softener on physical properties of cotton fabric, Indian Journal of Fibre and Textile Research, 35(1), 68-71.
  • 6. Cheng, S., Yuen, C., Kan, C., Cheuk, K., Tang, J. (2010) Systematic characterization of cosmetic textiles, Textile Research Journal, 80(6), 524-536. doi: 10.1177/0040517509338309.
  • 7. Cimilli, S., Nergis, B., Candan, C., Özdemir, M. (2010) A comparative study of some comfort-related properties of socks of different fiber types, Textile Research Journal, 80(10), 948-957. doi: 10.1177/0040517509349782.
  • 8. Choudhury, A.R., Chatterjee, B., Saha, S., Shaw, K. (2012) Comparison of performances of macro, micro and nano silicone softeners, Journal of the Textile Institute, 103(9), 1012-1023. doi:10.1080/00405000.2012.654666.
  • 9. Çoban, S. (1999) Bitim işlemlerinde yumuşak tutum ve yumuşatıcı maddeler, Tekstil ve Konfeksiyon, 167-173.
  • 10. Eryürük, S. (2004) Polar kumaşların konfor özelliklerinin incelenmesi, Örme-İhtisas, 2(7), 38-42.
  • 11. Frydrych, I., Dziworska, G., Bilska, J. (2002) Comparative analysis of the thermal insulation properties of fabrics made of natural and man-made cellulose fibres, Fibres and Textiles in Eastern Europe, 10(4), 40-44.
  • 12. Guanxiong, Q., Yuan, Z., Zhongwei, W., Jianli, L., Min, L., Jie, Z. (1991) Comfort in knitted fabrics, International Man-Made Fibres Congress Proceeding, 112, Dornbirn.
  • 13. Gülsevin, N. (2005) Spor giysilerin konfor özellikleri üzerine bir araştırma, Yüksek Lisans Tezi, Ege Üniversitesi, İzmir.
  • 14. Habereder, P., Bereck, A. (2002) Part 2: Silicone softeners, J Review of Progress in Coloration, 32(1), 125-137. doi: 10.1111/j.1478-4408.2002.tb00256.x.
  • 15. Hardt, P. (1984) Silicon textile auxiliaries, Textilveredlung, 19(5), 143-146.
  • 16. Hashem, M., Ibrahim, N.A., El-Shafei, A., Refaie, R., Hauser, P. (2009) An eco-friendly–novel approach for attaining wrinkle–free/soft-hand cotton fabric, Carbohydrate Polymers, 78(4), 690-703. doi: 0.1016/j.carbpol.2009.06.004.
  • 17. Havenith, G. (2002) The interaction of clothing and thermoregulation, Exogenous Dermatology, 1(5), 221-230. doi: 10.1159/000068802.
  • 18. Islam, M.M., Islam, A., Huiyu, J. (2015) Silicone softener synthesis and application on knit and woven white cotton fabrics, American Journal of Polymer Science & Engineering, 3(1), 129-138.
  • 19. Jatoi, A.W., Khatri, Z., Ahmed, F., Memon, M.H. (2015) Effect of silicone nano, nano/micro and nano/macro-emulsion softeners on color yield and physical characteristics of dyed cotton fabric, Journal of Surfactants and Detergents, 18(2), 205-211. doi:10.1007/s11743-014-1647-5.
  • 20. Jun, Y., Kang, Y., Park, C., Choi, C. (2002) Evaluation of textile performance of soccer wear, Textile Asia, 33(5), 43-44.
  • 21. Jun, Y., Park, C.H., Shim, H., Kang, T.J. (2009) Thermal comfort properties of wearing caps from various textiles, Textile Research Journal, 79(2), 179-189. doi: 10.1177/0040517508093444.
  • 22. Koerner, G., Schulze, M., Weis, J. (1989) Silicone chemie und technologie, Essen, Germany.
  • 23. Kut, D., Günesoğlu, C., Orhan, M. (2005) Determining suitable softener type for 100% pet woven fabric, AATCC Review, 5(5), 16-19.
  • 24. Lautenschlager, H.-J., Bindl, J., Huhn, K. (1993) Structural correlations for amino-functional silicone softeners: alkylation and acylation for changing the property profile, Textil Praxis International, 48(5), 438-442.
  • 25. Lautenschlager, H., Bindl, J., Huhn, K. (1995) Structure activity relationships of aminofunctional siloxanes as components in softening finishes, Textile Chemist & Colorist, 27(3), 27-29.
  • 26. Matusiak, M. (2006) Investigation of the thermal insulation properties of multilayer textiles, Fibres & Textiles in Eastern Europe, 14(5), 98-102.
  • 27. Oğlakcioğlu, N., Marmaralı, A. (2007) Thermal comfort properties of some knitted structures, Fibres & Textiles in Eastern Europe, 15(5-6), 64-65.
  • 28. Oğlakcıoğlu, N., Marmaralı, A. (2010) Rejenere selüloz liflerinin kompresyon çoraplarının isıl konfor özelliklerine, Tekstil ve Mühendis, 17(77), 6-12.
  • 29. Parvinzadeh, M. (2007) The Effects of softeners on the properties of sulfur‐dyed cotton fibers, Journal of Surfactants and Detergents, 10(4), 219-223. doi: 10.1007/s11743-007-1034-6.
  • 30. Paul, R. (2015) Functional finishes for textiles: improving comfort, performance and protection, Elsevier, Cambridge, UK. doi: 10.1016/C2013-0-16373-8.
  • 31. Schindler, W.D., Hauser, P.J. (2004) Chemical finishing of textiles, Elsevier, Boca Raton, Florida.
  • 32. Shin, Y., Yoo, D.I., Son, K. (2005) Development of thermoregulating textile materials with microencapsulated phase change materials (pcm). IV. performance properties and hand of fabrics treated with pcm microcapsules, Journal of Applied Polymer Science, 97(3), 910-915. doi: 10.1002/app.21846.
  • 33. Son, K., Yoo, D., Shin, Y. (2014) Fixation of vitamin e microcapsules on dyed cotton fabrics, Chemical Engineering Journal, 239(3), 284-289. doi: 10.1016/j.cej.2013.11.034.
  • 34. Stanković, S.B., Popović, D., Poparić, G.B. (2008) Thermal properties of textile fabrics made of natural and regenerated cellulose fibers, Polymer Testing, 27(1), 41-48. doi: 10.1016/j.polymertesting.2007.08.003.
  • 35. Ucar, N., Yilmaz, T. (2004) Thermal properties of 1x1, 2x2, 3x3 rib knit fabrics, Fibres & Textiles in Eastern Europe, 12(3), 34-38.
  • 36. Weber, R. (1999) New aspects in softening, CHTR Beitlich, Tubingen, Germany.
  • 37. Wei, Y., Zheng, C., Chen, P., Yu, Q., Mao, T., Lin, J., Liu, L. (2019) Synthesis of multiblock linear polyether functional amino silicone softener and its modification of surface properties on cotton fabrics, Polymer Bulletin, 76(1), 447-467. doi: 10.1007/s00289-018-2375-1.
  • 38. Zia, K.M., Tabassum, S., Barkaat-ul-Hasin, S., Zuber, M., Jamil, T., Jamal, M.A. (2011) Preparation of rich handles soft cellulosic fabric using amino silicone based softener. part-i: surface smoothness and softness properties, International Journal of Biological Macromolecules, 48(3), 482-487. doi: 10.1016/j.ijbiomac.2011.01.011.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Giyilebilir Malzemeler
Bölüm Araştırma Makaleleri
Yazarlar

Mehmet Orhan 0000-0001-8043-4148

Mehmet Tiritoğlu 0000-0002-2316-0782

Begüm Ozbarutcu

Yayımlanma Tarihi 31 Ağustos 2020
Gönderilme Tarihi 19 Aralık 2019
Kabul Tarihi 20 Temmuz 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 25 Sayı: 2

Kaynak Göster

APA Orhan, M., Tiritoğlu, M., & Ozbarutcu, B. (2020). SİLİKON YUMUŞATICILARIN PAMUK VE VİSKON ÖRME KUMAŞLAR ÜZERİNDE ETKİLERİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(2), 941-960. https://doi.org/10.17482/uumfd.660283
AMA Orhan M, Tiritoğlu M, Ozbarutcu B. SİLİKON YUMUŞATICILARIN PAMUK VE VİSKON ÖRME KUMAŞLAR ÜZERİNDE ETKİLERİ. UUJFE. Ağustos 2020;25(2):941-960. doi:10.17482/uumfd.660283
Chicago Orhan, Mehmet, Mehmet Tiritoğlu, ve Begüm Ozbarutcu. “SİLİKON YUMUŞATICILARIN PAMUK VE VİSKON ÖRME KUMAŞLAR ÜZERİNDE ETKİLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25, sy. 2 (Ağustos 2020): 941-60. https://doi.org/10.17482/uumfd.660283.
EndNote Orhan M, Tiritoğlu M, Ozbarutcu B (01 Ağustos 2020) SİLİKON YUMUŞATICILARIN PAMUK VE VİSKON ÖRME KUMAŞLAR ÜZERİNDE ETKİLERİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25 2 941–960.
IEEE M. Orhan, M. Tiritoğlu, ve B. Ozbarutcu, “SİLİKON YUMUŞATICILARIN PAMUK VE VİSKON ÖRME KUMAŞLAR ÜZERİNDE ETKİLERİ”, UUJFE, c. 25, sy. 2, ss. 941–960, 2020, doi: 10.17482/uumfd.660283.
ISNAD Orhan, Mehmet vd. “SİLİKON YUMUŞATICILARIN PAMUK VE VİSKON ÖRME KUMAŞLAR ÜZERİNDE ETKİLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25/2 (Ağustos 2020), 941-960. https://doi.org/10.17482/uumfd.660283.
JAMA Orhan M, Tiritoğlu M, Ozbarutcu B. SİLİKON YUMUŞATICILARIN PAMUK VE VİSKON ÖRME KUMAŞLAR ÜZERİNDE ETKİLERİ. UUJFE. 2020;25:941–960.
MLA Orhan, Mehmet vd. “SİLİKON YUMUŞATICILARIN PAMUK VE VİSKON ÖRME KUMAŞLAR ÜZERİNDE ETKİLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 25, sy. 2, 2020, ss. 941-60, doi:10.17482/uumfd.660283.
Vancouver Orhan M, Tiritoğlu M, Ozbarutcu B. SİLİKON YUMUŞATICILARIN PAMUK VE VİSKON ÖRME KUMAŞLAR ÜZERİNDE ETKİLERİ. UUJFE. 2020;25(2):941-60.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr