Araştırma Makalesi
BibTex RIS Kaynak Göster

Bazalt Fiber Ve Cam Fiber Takviyeli PA66 Matrisli Kompozit Malzemelerin Mikromekanik Modellenmesi

Yıl 2025, Cilt: 30 Sayı: 1, 87 - 106, 28.04.2025
https://doi.org/10.17482/uumfd.1557584

Öz

Bu çalışmada ortalama alan homojenizasyonu (mean field homeogenization, MFH) yöntemi kullanılarak bazalt fiber (BF) ve cam fiber (GF) takviyeli poliamid66 (PA66) matriksli kompozit malzemelerin mekanik özellikleri incelenmiştir. Ağırlıkça % 5, 10, 20, 40 katkı oranındaki BF ve GF takviyeli PA66 matriksli kompozit malzemeler MFH esaslı Digimat-ortalama alan (Digimat-mean field, Digimat-MF) yazılımı kullanılarak modellenmiştir. Digimat-MF yazılımı sayesinde kompozit malzemelerin mikromekanik modellemesi gerçekleştirilerek maksimum çekme dayanımı ve elastik modülleri hesaplanmıştır. Bununla birlikte kompozit malzemelerin temsili hacim unsuru (representetive volume element, RVE) modellemesi Digimat-sonlu eleman (Digimat-finite element, Digimat FE) yazılımı kullanılarak gerçekleştirilmiştir. Daha sonra kompozit malzemelerin RVE modelleri üzerinde mikro boyutta meydana gelen hasar analizleri (gerilme ve uzama alanları) değerlendirilmiştir. Elde edilen sonuçlara göre BF takviyeli PA66 (BF/PA66) ve GF takviyeli PA66 (GF/PA66) kompozit malzemelerin mekanik özellikleri karşılaştırılmıştır. Sonuçlar değerlendirildiğinde BF/PA66 kompozit malzemelerin tüm katkı oranlarında GF/PA66 kompozit malzemelere kıyasla daha üstün mekanik özellikler sergilediği görülmüştür.

Kaynakça

  • ABAQUS, (2008) User Manual, © Dassault Systèmes
  • Adam, L., Delaere, K., Kaszacs, M., Gérard, J.-S., Assaker, R. and Doghri, I. (2009) Multi-scale modeling of polymer nanocomposites, Nano Science and Technology Institute, 2, 515-518
  • Anandamurthy, A., Guna, V. and Ilangovan, M. (2017) A review of fibrous reinforcements of concrete, Journal of Reinforced Plastics and Composites, 36(7), 519-552. doi.org/10.1177/0731684416685168
  • Arora, G. and Pathak, H. (2020) Experimental and numerical approach to study mechanical and fracture properties of high-density polyethylene carbon nanotubes composite, Materials Today Communications, 22, 100829. doi.org/10.1016/j.mtcomm.2019.100829
  • Abhilash, R.M., Venkatesh, G.S. and Shakti, S.C. (2020) Micromechanical modeling of bamboo short fiber reinforced polypropylene composites, Multiscale and Multidisciplinary Modeling, Experiments and Design, 4(1), 25-40. https://doi.org/10.1007/s41939-020-00081-3
  • Berveiller, M. and Zaoui, A. (1978) An extension of the self-consistent scheme to plasticallyflowing polycrystals,” Journal of the Mechanics and Physics of Solids, 26(5-6), 325-344. doi.org/10.1016/0022-5096(78)90003-0
  • Behnia, S., Daghigh, V., Nikbin, K., Fereidoon, A.B. and Ghorbani, J. (2016) The influence of stacking sequence and notch angle on charpy impact behavior of hybrid composites, Mechanics of Composite Materials, 52(4), 489-496. doi.org/10.1007/s11029-016-9599-7
  • Bing, D.U., Liming, C.H.E.N., Houchang, L.I.U., Qinghao, H.E., Weiming, Q.I.N. and Weiguo, L.I. (2020) Resistance welding of glass fiber reinforced thermoplastic composite: experimental investigation and process parameter optimization, Chinese Journal of Aeronautics, 33(12), 3469-3478. doi.org/10.1016/j.cja.2020.02.018
  • Bias Mühendislik, (2024). Composite Material Modeling Platform. Access address: https://bias.com.tr/en/product/software/structural/digimat, Access date: 25.07.2024
  • Cheewawuttipong, W., Fuoka, D., Tanoue, S., Uematsu, H. and Iemoto, Y. (2013) Thermal and mechanical properties of polypropylene/boron nitride composites, Energy Procedia, 34, 808-817. doi.org/10.1016/j.egypro.2013.06.817
  • Çuvalci, H., Erbay, K. and İpek, H. (2014) Investigation of the effect of glass fiber content on the mechanical properties of cast polyamide, Arabian Journal for Science and Engineering, 39(12), 9049-9056. http://dx.doi.org/10.1007/s13369-014-1409-8
  • DIGIMAT, (2009) Software Platform for Nonlinear Multi-scale Modeling of Composite Materials and Structures, e-Xstream Engineering, Belgium and Luxembourg
  • DIGIMAT, (2012) software documentation, e-Xstream engineering
  • Derusova, D.A., Vavilov, V.P., Sfarra, S., Sarasini, F. and Druzhinin, N.V. (2018) Applying ultrasonic resonance vibrometry for the evaluation of impact damage in natural/ synthetic fibre reinforced composites, Polymer Testing, 68, 70-76. doi.org/10.1016/j.polymertesting.2018.03.053
  • Dean, A., Grbic, N., Rolfes, R. and Behrens, B. (2019) Macro-mechanical modeling and experimental validation of anisotropic, pressure- and temperature-dependent behavior of short fiber composites, Composite Structures, 211, 630-643. doi.org/10.1016/j.compstruct.2018.12.045
  • Elmarakbi, A., Azoti, W. and Serry, M. (2017) Multiscale modelling of hybrid glass fibres reinforced graphene platelets polyamide PA6 matrix composites for crashworthiness applications, Applied Materials Today, 6, 1-8. doi.org/10.1016/j.apmt.2016.11.003
  • Farsani, R.E., Daghigh, V. and Derakhshani, K. (2024) Tensile and flexural properties of basalt fibers/nano-alumina powder-reinforced multi-scale composites, Surfaces and Interfaces, 46, 104009. doi.org/10.1016/j.surfin.2024.104009
  • Gaurav, A. and Himanshu, P. (2019) Modeling of transversely isotropic properties of CNT-polymer composites using meso-scale FEM approach, Composites Part B: Engineering, 166, 588-597. doi.org/10.1016/j.compositesb.2019.02.061
  • Harris B. (2004) Engineering Composite, Chemical Industry Press.
  • Hill, R. (1965) Continuum micro-mechanics of elastoplastic polycrystals, Journal of the Mechanics and Physics of Solids, 13(2), 89-101. doi.org/10.1016/0022-5096(65)90023-2.
  • Hutchinson, J.W. (1976) Bounds and self-consistent estimates for creep of polycrystalline materials, Proceedings of the Royal Society A, 348(1652), 101-127. doi.org/10.1098/rspa.1976.0027
  • Hao, L.C. and Yu, W.D. (2010) Evaluation of thermal protective performance of basalt fibre nonwoven fabrics, Journal of Thermal Analysis and Calorimetry, 100(2), 551-555. doi.org/10.1007/s10973-009-0179-0
  • Hussein, A. and Kim, B. (2018) Graphene/polymer nanocomposites: The active role of the matrix in stiffening mechanics, Composite Structures, 202, 170-181. doi.org/10.1016/j.compstruct.2018.01.023
  • Isaincu, A., Dan, M., Ungureanu, V. and Marșavina, L. (2021) Numerical investigation on the influence of fiber orientation mapping procedure to the mechanical response of short-fiber reinforced composites using Moldflow, Digimat and Ansys software, Materials Today: Proceedings, 45(1), 4304-4309. doi.org/10.1016/j.matpr.2020.12.792
  • Kumar, C.S., Arumugam, V., Dhakal, H.N., John, R. (2015) Effect of temperature and hybridisation on the low velocity impact behavior of hemp-basalt/epoxy composites, Composite Structures, 125, 407-416. doi.org/10.1016/j.compstruct.2015.01.037
  • Kumar, M.A., Chakradhar, K.V.P., Reddy, G.R., Reddy, G.H. and Reddy, N.S. (2012) Tensile and thermal parameters of natural fibers and polymer coatings: effect on sourghum vulgaris stalks, Journal of Polymer Materials, 29(1), 71-75
  • Lebensohn, R.A. and Tomé, C.N. (1993) A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys, Acta Metallurgica et Materialia, 41(9), 2611-2624. doi.org/10.1016/0956-7151(93)90130-K
  • Lee, T.W., Lee, S., Park, S.M. and Lee, D. (2019) Mechanical, thermomechanical, and local anisotropy analyses of long basalt fiber reinforced polyamide 6 composites, Composite Structures, 222, 110917. https://doi.org/10.1016/j.compstruct.2019.110917
  • Lingesh, B.V., Rudresh, B.M., Ravi Kumar, B.N. and Reddappa, H.N. (2022) Effect of fiber loading on mechanical, physical behavior of thermoplastic blend composites, Materials Today: Proceedings, 54, 245-250. https://doi.org/10.1016/j.matpr.2021.08.303
  • Liang, Ji-Z. (2012) Predictions of Young’s modulus of short inorganic fiber reinforced polymer composites, Composites: Part B, 43(4), 1763-1766. https://doi.org/10.1016/j.compositesb.2012.01.010
  • Liu, J., Ma, Y., Fu, J. and Duke, K. (2015) A novel CACD/CAD/CAE integrated design framework for fiber-reinforced plastic parts, Advances in Engineering Software, 87, 13-29. doi.org/10.1016/j.advengsoft.2015.04.013
  • Li, Y., Li, W., Deng, Y., Shao, J., Ma, J., Tao, Y., Kou, H., Zhang, X., Zhang, X., Chen, L. and Peng, F. (2018) Temperature-dependent longitudinal tensile strength model for short-fiber-reinforced polymer composites considering fiber orientation and fiber length distribution, Journal of Materials Science, 53(17), 12190-12202. doi.org/10.1007/s10853-018-2517-8
  • Leman, J. (2020) Welp, scientists found 28 new virus groups in a melting glacier. Erişim Adresi: https://www.popularmechanics.com/science/health/a30643717/virusesfo undmelting-glacier/ (Erişim Tarihi: 20.07.2024)
  • MSC Software Company, (2009) Digimat User’s Manual, e-Xstream Engineering.
  • Mansor, M.R., Sapuan, S.M., Zaınudın, E.S., Nuraını, A.A. and Hambalı, A. (2013) Stiffness prediction of hybrid kenaf/glass fiber reinforced polypropylene composites using rule of mixtures (ROM) and rule of hybrid mixtures (RoHM), Journal of Polymer Materials, 30(3), 321-334
  • Mastura, M.T., Noryani, M., Hazliza Aida, C.H., Nuzaimah, M., Shaharuzaman, M.A., Zakaria, N.H. and Loh, Y.F. (2022) Statistical analysis of the performance of young’s modulus of natural fiber composites and synthetic fiber composites, Jurnal Teknologi (Sciences & Engineering), 84:6-2, 151-162. https://doi.org/10.11113/jurnalteknologi.v84.19366
  • Meszaros, L. and Szakacs, J. (2016) Low-cycle fatigue properties of basalt fiber and graphene reinforced polyamide 6 hybrid composites, Journal of Reinforced Plastics and Composites, 35(22), 1671-1681. https://doi.org/10.1177/0731684416665176
  • Mortazavian, S. and Fatemi, A. (2015) Effects of fiber orientation and anisotropy on tensile strength and elastic modulus of short fiber reinforced polymer composites, Composites Part B: Engineering, 72, 116-129. doi.org/10.1016/j.compositesb.2014.11.041
  • Mortazavian, S. and Fatemi, A. (2017) Fatigue of short fiber thermoplastic composites: A review of recent experimental results and analysis, International Journal of Fatigue, 102, 171-183. doi.org/10.1016/j.ijfatigue.2017.01.037
  • Moon, J., Shin, H., Baek, K., Choi, J. and Cho, M. (2018) Multiscale modeling of photomechanical behavior of photo-responsive nanocomposite with carbon nanotubes, Composites Science and Technology, 166, 27-35. doi.org/10.1016/j.compscitech.2018.03.032
  • Mouhmida, B., Imada, A., Benseddiqa, N., Benmedakhe`neb, S. and Maazouz, A. (2006) A study of the mechanical behaviour of a glass fibre reinforced polyamide 6,6: Experimental investigation, Polymer Testing, 25(4), 544-552. https://doi.org/10.1016/j.polymertesting.2006.03.008
  • Micota, D., Isaincu, A. and Marsavina, L. (2021) Micromechanical modeling of glass fiber reinforced plastic material, Materials Today: Proceedings, 45(5), 4330-4336. doi.org/10.1016/j.matpr.2020.12.919
  • Mishra, R.K., Behera, B.K., Chandan, V., Nazari, S. and Muller, M. (2022) Modeling and simulation of mechanical performance in textile structural concrete composites reinforced with basalt fibers, Polymers, 14(19), 4108. doi.org/10.3390/polym14194108
  • Ogierman, W. and Kokot, G. (2013) Mean field homogenization in multiscale modelling of composite materials, Journal of Achievements in Materials and Manufacturing Engineering, 61(2), 343-348
  • Ogierman, W. and Kokot, G. (2014) Particle shape influence on elastic-plastic behaviour of particle-reinforced composites, Archives of Materials Science and Engineering, 67(2), 70-76
  • Samyna, P., Baets, P., Schoukens, G. and Van Driessche, I. (2007) Friction, wear and transfer of pure and internally lubricated cast polyamides at various testing scales, Wear, 262(11-12), 1433-1449. http://dx.doi.org/10.1016/j.wear.2007.01.013
  • Samyn, P. and Tuzolana, T.M. (2007) Effect of test scale on the friction properties of pure and internal-lubricated cast polyamides at running in, Polymer Test, 26(5), 660-675. http://dx.doi.org/10.1016/j.polymertesting.2007.04.002
  • Selmi, A., Friebel, C., Doghri, I. and Hassis, H. (2007) Prediction of the elastic properties of single walled carbon nanotube reinforced polymers: A comparative study of several micromechanical models, Composites Science and Technology, 67(10), 2071-2084. doi.org/10.1016/j.compscitech.2006.11.016
  • Siot, A., Léger, R., Longuet, C., Otazaghine, B., Caro-Bretelle, A.S. and Azéma, N. (2019) Dispersion control of raw and modified silica particles in PMMA. Impact on mechanical properties, from experiments to modelling, Composites Part B, 163-172. https://doi.org/10.1016/j.compositesb.2018.08.104
  • Shin, H., Baek, K., Han, J.G. and Cho, M. (2017) Homogenization analysis of polymeric nanocomposites containing nanoparticulate clusters, Composites Science and Technology, 138, 217-224. doi.org/10.1016/j.compscitech.2016.11.021
  • Siot, A., Léger, R., Longuet, C., Otazaghine, B., Caro-Bretelle, A.S. and Azéma, N. (2019) Dispersion control of raw and modified silica particles in PMMA. Impact on mechanical properties, from experiments to modelling, Composites Part B: Engineering, 157, 163-172. doi.org/10.1016/j.compositesb.2018.08.104
  • Sun, X., Gao, Z., Cao, P. and Zhou, C. (2019) Mechanical properties tests and multiscale numerical simulations for basalt fiber reinforced concrete, Construction and Building Materials, 202(3), 58-72. doi.org/10.1016/j.conbuildmat.2019.01.018
  • Sumit, D.L., Shaik, S. and Ashish, B.D. (2020) Prediction of elastic modulus of polymer composites using Hashin-Shtrikman bound, mean field homogenization and finite element technique, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(8), 1653-1659
  • Sarasini, F., Tirill`o, J., Lampani, L., Barbero, E., Sanchez-Saez, S., Valente, T., Gaudenzi, P. and Scarponi, C. (2020) Impact behavior of sandwich structures made of flax/epoxy face sheets and agglomerated cork, Journal of Natural Fibers, 17(2), 168-188. doi.org/10.1080/15440478.2018.1477084
  • Tseng, H.C., Chang, R.Y. and Hsu, C.H. (2020) Comparison of recent fiber orientation models in injection molding simulation of fiber-reinforced composites, Journal of Thermoplastic Composite Materials, 33(1), 35-52. doi.org/10.1177/0892705718804599
  • Withers, P.J. (1989) The determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium, and its relevance to composite materials, Philosophical Magazine A, 59(4), 759-781. doi.org/10.1080/01418618908209819
  • Wang, H.W., Zhou, H.W., Gui, L.L., Ji, H.W. and Zhang, X.C. (2014) Analysis of effect of fiber orientation on Young’s modulus for unidirectional fiber reinforced composites, Composites: Part B, 56, 733-739. https://doi.org/10.1016/j.compositesb.2013.09.020
  • Wang, F., Yang, M., Zhou, S., Ran, S. and Zhang, J. (2018) Effect of fiber volume fraction on the thermal and mechanical behavior of polylactide-based composites incorporating bamboo fibers, Journal of Applied Polymer Science, 135(15), 46148. https://doi.org/10.1002/app.46148
  • Yang, M., Wang, F., Zhou, S., Lu, Z., Ran, S., Li, L. and Shao, J. (2019) Thermal and mechanical performance of unidirectional composites from bamboo fibers with varying volume fractions, Polymer Composites, 40(10), 3929-3937. https://doi.org/10.1002/pc.25253
  • Yang, M., Li, W., He, Y., Zhang, X., Li, Y., Zhao, Z., Dong, P., Zheng, S. and Wang, L. (2021) Modeling the temperature dependent ultimate tensile strength of fiber/ polymer composites considering fiber agglomeration, Composites Science and Technology, 213, 108905. https://doi.org/10.1016/j.compscitech.2021.108905
  • Yıldırım, F., Demirel, B. and Bulucu, E.D. (2022) Investigation of the mechanical properties of calcite reinforced polypropylene by using digimat-mean field homogenization and ansys FEM, Materials Today Communications, 33, 105023. doi.org/10.1016/j.mtcomm.2022.105023
  • Zhenkun, L., Quan, W., Yilan, K., Wei, Q. and Xuemin, P. (2010) Stress transfer in microdroplet tensile test: PVC-coated and uncoated Kevlar-29 single fiber, Optics and Lasers in Engineering, 48(11), 1089-1095. https://doi.org/10.1016/j.optlaseng.2009.12.008
  • Zhou, W., Qi, S., An, Q., Zhao, H. and Liu, N. (2007) Thermal conductivity of boron nitride reinforced polyethylene composites, Materials Research Bulletin, 42(10), 1863-1873. doi.org/10.1016/j.materresbull.2006.11.047
  • Zhou, Y. and Mallick, P.K. (2005) A non-linear damage model for the tensile behavior of an injection molded short E-glass fiber reinforced polyamide-6,6, Materials Science and Engineering A, 393(1-2), 303-309. https://doi.org/10.1016/j.msea.2004.10.038

MICROMECHANICAL MODELING OF BASALT FIBER AND GLASS FIBER REINFORCED PA66 MATRIX COMPOSITE MATERIALS

Yıl 2025, Cilt: 30 Sayı: 1, 87 - 106, 28.04.2025
https://doi.org/10.17482/uumfd.1557584

Öz

In this study, mechanical properties of basalt fiber (BF) and glass fiber (GF) reinforced polyamide66 (PA66) matrix composite materials were investigated using the mean field homeogenization (MFH) method. BF and GF reinforced PA66 matrix composite materials with 5, 10, 20, 40 wt% additives were modeled using MFH based Digimat-mean field (Digimat-MF) software. With Digimat-MF software, micromechanical modeling of composite materials was performed and maximum tensile strength and elastic modulus were calculated. In addition, representetive volume element (RVE) modeling of composite materials was performed using Digimat-finite element (Digimat-FE) software. Then, micro-scale damage analysis (stress and strain regions) were evaluated on RVE models of composite materials. According to the results obtained, the mechanical properties of BF reinforced PA66 (BF/PA66) and GF reinforced PA66 (GF/PA66) composite materials were compared. The results showed that BF/PA66 composite materials exhibited superior mechanical properties compared to GF/PA66 composite materials at all additive ratios.

Kaynakça

  • ABAQUS, (2008) User Manual, © Dassault Systèmes
  • Adam, L., Delaere, K., Kaszacs, M., Gérard, J.-S., Assaker, R. and Doghri, I. (2009) Multi-scale modeling of polymer nanocomposites, Nano Science and Technology Institute, 2, 515-518
  • Anandamurthy, A., Guna, V. and Ilangovan, M. (2017) A review of fibrous reinforcements of concrete, Journal of Reinforced Plastics and Composites, 36(7), 519-552. doi.org/10.1177/0731684416685168
  • Arora, G. and Pathak, H. (2020) Experimental and numerical approach to study mechanical and fracture properties of high-density polyethylene carbon nanotubes composite, Materials Today Communications, 22, 100829. doi.org/10.1016/j.mtcomm.2019.100829
  • Abhilash, R.M., Venkatesh, G.S. and Shakti, S.C. (2020) Micromechanical modeling of bamboo short fiber reinforced polypropylene composites, Multiscale and Multidisciplinary Modeling, Experiments and Design, 4(1), 25-40. https://doi.org/10.1007/s41939-020-00081-3
  • Berveiller, M. and Zaoui, A. (1978) An extension of the self-consistent scheme to plasticallyflowing polycrystals,” Journal of the Mechanics and Physics of Solids, 26(5-6), 325-344. doi.org/10.1016/0022-5096(78)90003-0
  • Behnia, S., Daghigh, V., Nikbin, K., Fereidoon, A.B. and Ghorbani, J. (2016) The influence of stacking sequence and notch angle on charpy impact behavior of hybrid composites, Mechanics of Composite Materials, 52(4), 489-496. doi.org/10.1007/s11029-016-9599-7
  • Bing, D.U., Liming, C.H.E.N., Houchang, L.I.U., Qinghao, H.E., Weiming, Q.I.N. and Weiguo, L.I. (2020) Resistance welding of glass fiber reinforced thermoplastic composite: experimental investigation and process parameter optimization, Chinese Journal of Aeronautics, 33(12), 3469-3478. doi.org/10.1016/j.cja.2020.02.018
  • Bias Mühendislik, (2024). Composite Material Modeling Platform. Access address: https://bias.com.tr/en/product/software/structural/digimat, Access date: 25.07.2024
  • Cheewawuttipong, W., Fuoka, D., Tanoue, S., Uematsu, H. and Iemoto, Y. (2013) Thermal and mechanical properties of polypropylene/boron nitride composites, Energy Procedia, 34, 808-817. doi.org/10.1016/j.egypro.2013.06.817
  • Çuvalci, H., Erbay, K. and İpek, H. (2014) Investigation of the effect of glass fiber content on the mechanical properties of cast polyamide, Arabian Journal for Science and Engineering, 39(12), 9049-9056. http://dx.doi.org/10.1007/s13369-014-1409-8
  • DIGIMAT, (2009) Software Platform for Nonlinear Multi-scale Modeling of Composite Materials and Structures, e-Xstream Engineering, Belgium and Luxembourg
  • DIGIMAT, (2012) software documentation, e-Xstream engineering
  • Derusova, D.A., Vavilov, V.P., Sfarra, S., Sarasini, F. and Druzhinin, N.V. (2018) Applying ultrasonic resonance vibrometry for the evaluation of impact damage in natural/ synthetic fibre reinforced composites, Polymer Testing, 68, 70-76. doi.org/10.1016/j.polymertesting.2018.03.053
  • Dean, A., Grbic, N., Rolfes, R. and Behrens, B. (2019) Macro-mechanical modeling and experimental validation of anisotropic, pressure- and temperature-dependent behavior of short fiber composites, Composite Structures, 211, 630-643. doi.org/10.1016/j.compstruct.2018.12.045
  • Elmarakbi, A., Azoti, W. and Serry, M. (2017) Multiscale modelling of hybrid glass fibres reinforced graphene platelets polyamide PA6 matrix composites for crashworthiness applications, Applied Materials Today, 6, 1-8. doi.org/10.1016/j.apmt.2016.11.003
  • Farsani, R.E., Daghigh, V. and Derakhshani, K. (2024) Tensile and flexural properties of basalt fibers/nano-alumina powder-reinforced multi-scale composites, Surfaces and Interfaces, 46, 104009. doi.org/10.1016/j.surfin.2024.104009
  • Gaurav, A. and Himanshu, P. (2019) Modeling of transversely isotropic properties of CNT-polymer composites using meso-scale FEM approach, Composites Part B: Engineering, 166, 588-597. doi.org/10.1016/j.compositesb.2019.02.061
  • Harris B. (2004) Engineering Composite, Chemical Industry Press.
  • Hill, R. (1965) Continuum micro-mechanics of elastoplastic polycrystals, Journal of the Mechanics and Physics of Solids, 13(2), 89-101. doi.org/10.1016/0022-5096(65)90023-2.
  • Hutchinson, J.W. (1976) Bounds and self-consistent estimates for creep of polycrystalline materials, Proceedings of the Royal Society A, 348(1652), 101-127. doi.org/10.1098/rspa.1976.0027
  • Hao, L.C. and Yu, W.D. (2010) Evaluation of thermal protective performance of basalt fibre nonwoven fabrics, Journal of Thermal Analysis and Calorimetry, 100(2), 551-555. doi.org/10.1007/s10973-009-0179-0
  • Hussein, A. and Kim, B. (2018) Graphene/polymer nanocomposites: The active role of the matrix in stiffening mechanics, Composite Structures, 202, 170-181. doi.org/10.1016/j.compstruct.2018.01.023
  • Isaincu, A., Dan, M., Ungureanu, V. and Marșavina, L. (2021) Numerical investigation on the influence of fiber orientation mapping procedure to the mechanical response of short-fiber reinforced composites using Moldflow, Digimat and Ansys software, Materials Today: Proceedings, 45(1), 4304-4309. doi.org/10.1016/j.matpr.2020.12.792
  • Kumar, C.S., Arumugam, V., Dhakal, H.N., John, R. (2015) Effect of temperature and hybridisation on the low velocity impact behavior of hemp-basalt/epoxy composites, Composite Structures, 125, 407-416. doi.org/10.1016/j.compstruct.2015.01.037
  • Kumar, M.A., Chakradhar, K.V.P., Reddy, G.R., Reddy, G.H. and Reddy, N.S. (2012) Tensile and thermal parameters of natural fibers and polymer coatings: effect on sourghum vulgaris stalks, Journal of Polymer Materials, 29(1), 71-75
  • Lebensohn, R.A. and Tomé, C.N. (1993) A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys, Acta Metallurgica et Materialia, 41(9), 2611-2624. doi.org/10.1016/0956-7151(93)90130-K
  • Lee, T.W., Lee, S., Park, S.M. and Lee, D. (2019) Mechanical, thermomechanical, and local anisotropy analyses of long basalt fiber reinforced polyamide 6 composites, Composite Structures, 222, 110917. https://doi.org/10.1016/j.compstruct.2019.110917
  • Lingesh, B.V., Rudresh, B.M., Ravi Kumar, B.N. and Reddappa, H.N. (2022) Effect of fiber loading on mechanical, physical behavior of thermoplastic blend composites, Materials Today: Proceedings, 54, 245-250. https://doi.org/10.1016/j.matpr.2021.08.303
  • Liang, Ji-Z. (2012) Predictions of Young’s modulus of short inorganic fiber reinforced polymer composites, Composites: Part B, 43(4), 1763-1766. https://doi.org/10.1016/j.compositesb.2012.01.010
  • Liu, J., Ma, Y., Fu, J. and Duke, K. (2015) A novel CACD/CAD/CAE integrated design framework for fiber-reinforced plastic parts, Advances in Engineering Software, 87, 13-29. doi.org/10.1016/j.advengsoft.2015.04.013
  • Li, Y., Li, W., Deng, Y., Shao, J., Ma, J., Tao, Y., Kou, H., Zhang, X., Zhang, X., Chen, L. and Peng, F. (2018) Temperature-dependent longitudinal tensile strength model for short-fiber-reinforced polymer composites considering fiber orientation and fiber length distribution, Journal of Materials Science, 53(17), 12190-12202. doi.org/10.1007/s10853-018-2517-8
  • Leman, J. (2020) Welp, scientists found 28 new virus groups in a melting glacier. Erişim Adresi: https://www.popularmechanics.com/science/health/a30643717/virusesfo undmelting-glacier/ (Erişim Tarihi: 20.07.2024)
  • MSC Software Company, (2009) Digimat User’s Manual, e-Xstream Engineering.
  • Mansor, M.R., Sapuan, S.M., Zaınudın, E.S., Nuraını, A.A. and Hambalı, A. (2013) Stiffness prediction of hybrid kenaf/glass fiber reinforced polypropylene composites using rule of mixtures (ROM) and rule of hybrid mixtures (RoHM), Journal of Polymer Materials, 30(3), 321-334
  • Mastura, M.T., Noryani, M., Hazliza Aida, C.H., Nuzaimah, M., Shaharuzaman, M.A., Zakaria, N.H. and Loh, Y.F. (2022) Statistical analysis of the performance of young’s modulus of natural fiber composites and synthetic fiber composites, Jurnal Teknologi (Sciences & Engineering), 84:6-2, 151-162. https://doi.org/10.11113/jurnalteknologi.v84.19366
  • Meszaros, L. and Szakacs, J. (2016) Low-cycle fatigue properties of basalt fiber and graphene reinforced polyamide 6 hybrid composites, Journal of Reinforced Plastics and Composites, 35(22), 1671-1681. https://doi.org/10.1177/0731684416665176
  • Mortazavian, S. and Fatemi, A. (2015) Effects of fiber orientation and anisotropy on tensile strength and elastic modulus of short fiber reinforced polymer composites, Composites Part B: Engineering, 72, 116-129. doi.org/10.1016/j.compositesb.2014.11.041
  • Mortazavian, S. and Fatemi, A. (2017) Fatigue of short fiber thermoplastic composites: A review of recent experimental results and analysis, International Journal of Fatigue, 102, 171-183. doi.org/10.1016/j.ijfatigue.2017.01.037
  • Moon, J., Shin, H., Baek, K., Choi, J. and Cho, M. (2018) Multiscale modeling of photomechanical behavior of photo-responsive nanocomposite with carbon nanotubes, Composites Science and Technology, 166, 27-35. doi.org/10.1016/j.compscitech.2018.03.032
  • Mouhmida, B., Imada, A., Benseddiqa, N., Benmedakhe`neb, S. and Maazouz, A. (2006) A study of the mechanical behaviour of a glass fibre reinforced polyamide 6,6: Experimental investigation, Polymer Testing, 25(4), 544-552. https://doi.org/10.1016/j.polymertesting.2006.03.008
  • Micota, D., Isaincu, A. and Marsavina, L. (2021) Micromechanical modeling of glass fiber reinforced plastic material, Materials Today: Proceedings, 45(5), 4330-4336. doi.org/10.1016/j.matpr.2020.12.919
  • Mishra, R.K., Behera, B.K., Chandan, V., Nazari, S. and Muller, M. (2022) Modeling and simulation of mechanical performance in textile structural concrete composites reinforced with basalt fibers, Polymers, 14(19), 4108. doi.org/10.3390/polym14194108
  • Ogierman, W. and Kokot, G. (2013) Mean field homogenization in multiscale modelling of composite materials, Journal of Achievements in Materials and Manufacturing Engineering, 61(2), 343-348
  • Ogierman, W. and Kokot, G. (2014) Particle shape influence on elastic-plastic behaviour of particle-reinforced composites, Archives of Materials Science and Engineering, 67(2), 70-76
  • Samyna, P., Baets, P., Schoukens, G. and Van Driessche, I. (2007) Friction, wear and transfer of pure and internally lubricated cast polyamides at various testing scales, Wear, 262(11-12), 1433-1449. http://dx.doi.org/10.1016/j.wear.2007.01.013
  • Samyn, P. and Tuzolana, T.M. (2007) Effect of test scale on the friction properties of pure and internal-lubricated cast polyamides at running in, Polymer Test, 26(5), 660-675. http://dx.doi.org/10.1016/j.polymertesting.2007.04.002
  • Selmi, A., Friebel, C., Doghri, I. and Hassis, H. (2007) Prediction of the elastic properties of single walled carbon nanotube reinforced polymers: A comparative study of several micromechanical models, Composites Science and Technology, 67(10), 2071-2084. doi.org/10.1016/j.compscitech.2006.11.016
  • Siot, A., Léger, R., Longuet, C., Otazaghine, B., Caro-Bretelle, A.S. and Azéma, N. (2019) Dispersion control of raw and modified silica particles in PMMA. Impact on mechanical properties, from experiments to modelling, Composites Part B, 163-172. https://doi.org/10.1016/j.compositesb.2018.08.104
  • Shin, H., Baek, K., Han, J.G. and Cho, M. (2017) Homogenization analysis of polymeric nanocomposites containing nanoparticulate clusters, Composites Science and Technology, 138, 217-224. doi.org/10.1016/j.compscitech.2016.11.021
  • Siot, A., Léger, R., Longuet, C., Otazaghine, B., Caro-Bretelle, A.S. and Azéma, N. (2019) Dispersion control of raw and modified silica particles in PMMA. Impact on mechanical properties, from experiments to modelling, Composites Part B: Engineering, 157, 163-172. doi.org/10.1016/j.compositesb.2018.08.104
  • Sun, X., Gao, Z., Cao, P. and Zhou, C. (2019) Mechanical properties tests and multiscale numerical simulations for basalt fiber reinforced concrete, Construction and Building Materials, 202(3), 58-72. doi.org/10.1016/j.conbuildmat.2019.01.018
  • Sumit, D.L., Shaik, S. and Ashish, B.D. (2020) Prediction of elastic modulus of polymer composites using Hashin-Shtrikman bound, mean field homogenization and finite element technique, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(8), 1653-1659
  • Sarasini, F., Tirill`o, J., Lampani, L., Barbero, E., Sanchez-Saez, S., Valente, T., Gaudenzi, P. and Scarponi, C. (2020) Impact behavior of sandwich structures made of flax/epoxy face sheets and agglomerated cork, Journal of Natural Fibers, 17(2), 168-188. doi.org/10.1080/15440478.2018.1477084
  • Tseng, H.C., Chang, R.Y. and Hsu, C.H. (2020) Comparison of recent fiber orientation models in injection molding simulation of fiber-reinforced composites, Journal of Thermoplastic Composite Materials, 33(1), 35-52. doi.org/10.1177/0892705718804599
  • Withers, P.J. (1989) The determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium, and its relevance to composite materials, Philosophical Magazine A, 59(4), 759-781. doi.org/10.1080/01418618908209819
  • Wang, H.W., Zhou, H.W., Gui, L.L., Ji, H.W. and Zhang, X.C. (2014) Analysis of effect of fiber orientation on Young’s modulus for unidirectional fiber reinforced composites, Composites: Part B, 56, 733-739. https://doi.org/10.1016/j.compositesb.2013.09.020
  • Wang, F., Yang, M., Zhou, S., Ran, S. and Zhang, J. (2018) Effect of fiber volume fraction on the thermal and mechanical behavior of polylactide-based composites incorporating bamboo fibers, Journal of Applied Polymer Science, 135(15), 46148. https://doi.org/10.1002/app.46148
  • Yang, M., Wang, F., Zhou, S., Lu, Z., Ran, S., Li, L. and Shao, J. (2019) Thermal and mechanical performance of unidirectional composites from bamboo fibers with varying volume fractions, Polymer Composites, 40(10), 3929-3937. https://doi.org/10.1002/pc.25253
  • Yang, M., Li, W., He, Y., Zhang, X., Li, Y., Zhao, Z., Dong, P., Zheng, S. and Wang, L. (2021) Modeling the temperature dependent ultimate tensile strength of fiber/ polymer composites considering fiber agglomeration, Composites Science and Technology, 213, 108905. https://doi.org/10.1016/j.compscitech.2021.108905
  • Yıldırım, F., Demirel, B. and Bulucu, E.D. (2022) Investigation of the mechanical properties of calcite reinforced polypropylene by using digimat-mean field homogenization and ansys FEM, Materials Today Communications, 33, 105023. doi.org/10.1016/j.mtcomm.2022.105023
  • Zhenkun, L., Quan, W., Yilan, K., Wei, Q. and Xuemin, P. (2010) Stress transfer in microdroplet tensile test: PVC-coated and uncoated Kevlar-29 single fiber, Optics and Lasers in Engineering, 48(11), 1089-1095. https://doi.org/10.1016/j.optlaseng.2009.12.008
  • Zhou, W., Qi, S., An, Q., Zhao, H. and Liu, N. (2007) Thermal conductivity of boron nitride reinforced polyethylene composites, Materials Research Bulletin, 42(10), 1863-1873. doi.org/10.1016/j.materresbull.2006.11.047
  • Zhou, Y. and Mallick, P.K. (2005) A non-linear damage model for the tensile behavior of an injection molded short E-glass fiber reinforced polyamide-6,6, Materials Science and Engineering A, 393(1-2), 303-309. https://doi.org/10.1016/j.msea.2004.10.038
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kompozit ve Hibrit Malzemeler
Bölüm Araştırma Makalesi
Yazarlar

Ferdi Yıldırım 0000-0002-6591-0633

Erken Görünüm Tarihi 21 Nisan 2025
Yayımlanma Tarihi 28 Nisan 2025
Gönderilme Tarihi 28 Eylül 2024
Kabul Tarihi 2 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 30 Sayı: 1

Kaynak Göster

APA Yıldırım, F. (2025). MICROMECHANICAL MODELING OF BASALT FIBER AND GLASS FIBER REINFORCED PA66 MATRIX COMPOSITE MATERIALS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 30(1), 87-106. https://doi.org/10.17482/uumfd.1557584
AMA Yıldırım F. MICROMECHANICAL MODELING OF BASALT FIBER AND GLASS FIBER REINFORCED PA66 MATRIX COMPOSITE MATERIALS. UUJFE. Nisan 2025;30(1):87-106. doi:10.17482/uumfd.1557584
Chicago Yıldırım, Ferdi. “MICROMECHANICAL MODELING OF BASALT FIBER AND GLASS FIBER REINFORCED PA66 MATRIX COMPOSITE MATERIALS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30, sy. 1 (Nisan 2025): 87-106. https://doi.org/10.17482/uumfd.1557584.
EndNote Yıldırım F (01 Nisan 2025) MICROMECHANICAL MODELING OF BASALT FIBER AND GLASS FIBER REINFORCED PA66 MATRIX COMPOSITE MATERIALS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30 1 87–106.
IEEE F. Yıldırım, “MICROMECHANICAL MODELING OF BASALT FIBER AND GLASS FIBER REINFORCED PA66 MATRIX COMPOSITE MATERIALS”, UUJFE, c. 30, sy. 1, ss. 87–106, 2025, doi: 10.17482/uumfd.1557584.
ISNAD Yıldırım, Ferdi. “MICROMECHANICAL MODELING OF BASALT FIBER AND GLASS FIBER REINFORCED PA66 MATRIX COMPOSITE MATERIALS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30/1 (Nisan2025), 87-106. https://doi.org/10.17482/uumfd.1557584.
JAMA Yıldırım F. MICROMECHANICAL MODELING OF BASALT FIBER AND GLASS FIBER REINFORCED PA66 MATRIX COMPOSITE MATERIALS. UUJFE. 2025;30:87–106.
MLA Yıldırım, Ferdi. “MICROMECHANICAL MODELING OF BASALT FIBER AND GLASS FIBER REINFORCED PA66 MATRIX COMPOSITE MATERIALS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 30, sy. 1, 2025, ss. 87-106, doi:10.17482/uumfd.1557584.
Vancouver Yıldırım F. MICROMECHANICAL MODELING OF BASALT FIBER AND GLASS FIBER REINFORCED PA66 MATRIX COMPOSITE MATERIALS. UUJFE. 2025;30(1):87-106.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr