Araştırma Makalesi
BibTex RIS Kaynak Göster

DÜŞÜK KARBONLU TEKNOLOJİ TİCARETİ VE İKLİM DİNAMİKLERİ: MAKİNE ÖĞRENİMİNE DAYALI BİR ARAŞTIRMA

Yıl 2025, Cilt: 10 Sayı: 20, 681 - 706, 27.12.2025
https://doi.org/10.54831/vanyyuiibfd.1840750

Öz

İklim değişikliği, Dünya’nın genel iklim modellerinde önemli ve kalıcı değişiklikleri kapsamaktadır. Bu çalışmanın temel amacı, Türkiye, Amerika Birleşik Devletleri, Almanya, Irak ve Çin ülkeleriyle ilgili atmosferik CO₂ konsantrasyonları ve ortalama deniz seviyesindeki değişim verilerinin incelemektir. Ayrıca, bu ülkelerdeki hava sıcaklığı, yüzey sıcaklığı ve hava olaylarına bağlı afetler gibi çeşitli faktörlerle ilişkiler kurmayı amaçlamaktadır. Araştırmada, Uluslararası Para Fonu’nun resmi web sitesinden elde edilen veriler kullanılmıştır. Çalışmada, Python tabanlı bir program aracılığıyla yürütülen Shapley Toplamsal Açıklama metodolojisi ve doğrusal olmayan dış girdi otoregresif ağı kullanılmaktadır. Sonuç olarak, ABD’nin düşük karbonlu teknolojilerle yaptığı ticaretin küresel sıcaklık artışıyla bağlantılı olduğu, buna karşılık çevre dostu ürünlerin ihracatının atmosferdeki CO₂ seviyelerini düşürmeye yardımcı olduğu tespit edilmiştir. Düşük karbonlu ürün ticareti aynı zamanda deniz seviyesinin yükselmesiyle de ilişkili olduğu belirlenmiştir. Modeller yüksek doğruluk göstererek, bu yöntemlerin iklim değişikliklerini tahmin etmek ve politika belirlemek için kullanılmasını desteklemektedir.

Kaynakça

  • Adamo, N., Al-Ansari, N., Sissakian, V., Fahmi, K. J., & Abed, S. A. (2022). Climate change: Droughts and increasing desertification in the Middle East, with special reference to Iraq. Engineering, 14(7), 235–273.
  • Al Iqbal, M. R., Rahman, S., Nabil, S. I., & Chowdhury, I. U. A. (2012, December). Knowledge based decision tree construction with feature importance domain knowledge. In 2012 7th International Conference on Electrical and Computer Engineering (pp. 659–662). IEEE.
  • Baker, A. C., Glynn, P. W., & Riegl, B. (2008). Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuarine, Coastal and Shelf Science, 80(4), 435–471.
  • BBC News. (2015). The birth of the weather forecast. Retrieved from https://www.bbc.co.uk/news
  • Boussaada, Z., Curea, O., Remaci, A., Camblong, H., & Mrabet Bellaaj, N. (2018). A nonlinear autoregressive exogenous (NARX) neural network model for predicting daily direct solar radiation. Energies, 11, 620.
  • Bulkeley, H. (2002). Part III: Urban governance and sustainability. Retrieved from .http://siteresources.worldbank.org/INTUWM/Resources/3402321205330656272/4768406-1291309208465/PartIII.pdf
  • Dunjko, V., & Briegel, H. J. (2018). Machine learning & artificial intelligence in the quantum domain: A review of recent progress. Reports on Progress in Physics, 81(7), 074001.
  • Hausken, K., & Mohr, M. (2001). The value of a player in n-person games. Social Choice and Welfare, 18, 465–483.
  • Kelle, A. C. (2021). MQTT protokolüne uygulanan siber saldırıların analizleri (Doktora tezi). Marmara Üniversitesi, Türkiye.
  • Khaleghi, S., Karimi, D., Beheshti, S. H., Hosen, M. S., Behi, H., Berecibar, M., & Van Mierlo, J. (2021). Online health diagnosis of lithium-ion batteries based on nonlinear autoregressive neural network. Applied Energy, 282, 116159.
  • Kuligowski, R. J., & Barros, A. P. (1998). Localized precipitation forecasts from a numerical weather prediction model using artificial neural networks. Weather and Forecasting, 13(4), 1194–1204.
  • Liu, M., Chen, Y., Chen, K., & Chen, Y. (2023). Progress and hotspots of research on land-use carbon emissions: A global perspective. Sustainability, 15(9), 7245.
  • Lobell, D. B., Field, C. B., Cahill, K. N., & Bonfils, C. (2006). Impacts of future climate change on California perennial crop yields: Model projections with climate and crop uncertainties. Agricultural and Forest Meteorology, 141(2–4), 208–218.
  • Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems (Vol. 30).
  • Mitchell, R., & Frank, E. (2017). Accelerating the XGBoost algorithm using GPU computing. PeerJ Computer Science, 3, e127.
  • Mohammed, M., Khan, M. B., & Bashier Mohammed, B. E. (2016). Machine learning: Algorithms and applications. CRC Press.
  • Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of machine learning. MIT Press. Özdemir, R. (2021). Makine öğrenmesindeki sınıflandırma yöntemlerinin karşılaştırılması ve e-ticaret üzerinde bir uygulama (Yüksek lisans tezi). İstanbul Ticaret Üniversitesi, Fen Bilimleri Enstitüsü.
  • Peter, C. (2011). Urbanism in the age of climate change. Island Press.
  • Rasp, S. (2019). Statistical methods and machine learning in weather and climate modeling (Doctoral dissertation). LMU.
  • Robertson, A., & Vitart, F. (Eds.). (2018). Sub-seasonal to seasonal prediction: The gap between weather and climate forecasting. Elsevier.
  • Selvan, M. P., Navanish, T., Kancharla Narayan Pavan, D. V. A. M., Jancy, S., Grace, J., & Helen, S. (2022). Rainfall prediction using machine learning techniques. Mathematical Statistician and Engineering Applications, 71(4), 3553–3562.
  • Shukla, R., Agarwal, A., Sachdeva, K., Kurths, J., & Joshi, P. (2019). Climate change perception: An analysis among farmer types of the Indian Western Himalayas. Climatic Change, 152, 103–119.
  • Singh, S. P., Bassignana-Khadka, I., Singh Karky, B., & Sharma, E. (2011). Climate change in the Hindu Kush-Himalayas: The state of current knowledge. ICIMOD.
  • The Multiple Faces of “Feature Importance” in XGBoost. (2022). Retrieved from https://towardsdatascience.com/be-careful-when-interpreting-your-features-importance-in-xgboost-6e16132588e7
  • TreeSHAP. (2022). Retrieved from https://docs.seldon.io/projects/alibi/en/stable/methods/TreeSHAP.html
  • Trexler, A. (2015). Anthropocene fictions: The novel in a time of climate change. University of Virginia Press.

LOW-CARBON TECHNOLOGY TRADE AND CLIMATE DYNAMICS: A MACHINE LEARNING-BASED INVESTIGATION

Yıl 2025, Cilt: 10 Sayı: 20, 681 - 706, 27.12.2025
https://doi.org/10.54831/vanyyuiibfd.1840750

Öz

Climate change encompasses significant and lasting alterations in the Earth’s overall climate patterns. The primary objective of this study is to examine atmospheric CO₂ concentration and mean sea level change data for Turkey, the United States, Germany, Iraq, and China. It also aims to establish relationships with various factors such as air temperature, surface temperature, and weather-related disasters in these countries. Data obtained from the official website of the International Monetary Fund were used in the research. The study employs the Shapley Additive Explanatory methodology and a nonlinear external input autoregressive network, implemented through a Python-based program. The results show that trade in low-carbon technologies by the US is linked to global temperature increase, while exports of environmentally friendly products help reduce atmospheric CO₂ levels. Trade in low-carbon products was also found to be associated with sea level rise. The models demonstrate high accuracy, supporting the use of these methods for predicting climate change and formulating policies.

Kaynakça

  • Adamo, N., Al-Ansari, N., Sissakian, V., Fahmi, K. J., & Abed, S. A. (2022). Climate change: Droughts and increasing desertification in the Middle East, with special reference to Iraq. Engineering, 14(7), 235–273.
  • Al Iqbal, M. R., Rahman, S., Nabil, S. I., & Chowdhury, I. U. A. (2012, December). Knowledge based decision tree construction with feature importance domain knowledge. In 2012 7th International Conference on Electrical and Computer Engineering (pp. 659–662). IEEE.
  • Baker, A. C., Glynn, P. W., & Riegl, B. (2008). Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuarine, Coastal and Shelf Science, 80(4), 435–471.
  • BBC News. (2015). The birth of the weather forecast. Retrieved from https://www.bbc.co.uk/news
  • Boussaada, Z., Curea, O., Remaci, A., Camblong, H., & Mrabet Bellaaj, N. (2018). A nonlinear autoregressive exogenous (NARX) neural network model for predicting daily direct solar radiation. Energies, 11, 620.
  • Bulkeley, H. (2002). Part III: Urban governance and sustainability. Retrieved from .http://siteresources.worldbank.org/INTUWM/Resources/3402321205330656272/4768406-1291309208465/PartIII.pdf
  • Dunjko, V., & Briegel, H. J. (2018). Machine learning & artificial intelligence in the quantum domain: A review of recent progress. Reports on Progress in Physics, 81(7), 074001.
  • Hausken, K., & Mohr, M. (2001). The value of a player in n-person games. Social Choice and Welfare, 18, 465–483.
  • Kelle, A. C. (2021). MQTT protokolüne uygulanan siber saldırıların analizleri (Doktora tezi). Marmara Üniversitesi, Türkiye.
  • Khaleghi, S., Karimi, D., Beheshti, S. H., Hosen, M. S., Behi, H., Berecibar, M., & Van Mierlo, J. (2021). Online health diagnosis of lithium-ion batteries based on nonlinear autoregressive neural network. Applied Energy, 282, 116159.
  • Kuligowski, R. J., & Barros, A. P. (1998). Localized precipitation forecasts from a numerical weather prediction model using artificial neural networks. Weather and Forecasting, 13(4), 1194–1204.
  • Liu, M., Chen, Y., Chen, K., & Chen, Y. (2023). Progress and hotspots of research on land-use carbon emissions: A global perspective. Sustainability, 15(9), 7245.
  • Lobell, D. B., Field, C. B., Cahill, K. N., & Bonfils, C. (2006). Impacts of future climate change on California perennial crop yields: Model projections with climate and crop uncertainties. Agricultural and Forest Meteorology, 141(2–4), 208–218.
  • Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems (Vol. 30).
  • Mitchell, R., & Frank, E. (2017). Accelerating the XGBoost algorithm using GPU computing. PeerJ Computer Science, 3, e127.
  • Mohammed, M., Khan, M. B., & Bashier Mohammed, B. E. (2016). Machine learning: Algorithms and applications. CRC Press.
  • Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of machine learning. MIT Press. Özdemir, R. (2021). Makine öğrenmesindeki sınıflandırma yöntemlerinin karşılaştırılması ve e-ticaret üzerinde bir uygulama (Yüksek lisans tezi). İstanbul Ticaret Üniversitesi, Fen Bilimleri Enstitüsü.
  • Peter, C. (2011). Urbanism in the age of climate change. Island Press.
  • Rasp, S. (2019). Statistical methods and machine learning in weather and climate modeling (Doctoral dissertation). LMU.
  • Robertson, A., & Vitart, F. (Eds.). (2018). Sub-seasonal to seasonal prediction: The gap between weather and climate forecasting. Elsevier.
  • Selvan, M. P., Navanish, T., Kancharla Narayan Pavan, D. V. A. M., Jancy, S., Grace, J., & Helen, S. (2022). Rainfall prediction using machine learning techniques. Mathematical Statistician and Engineering Applications, 71(4), 3553–3562.
  • Shukla, R., Agarwal, A., Sachdeva, K., Kurths, J., & Joshi, P. (2019). Climate change perception: An analysis among farmer types of the Indian Western Himalayas. Climatic Change, 152, 103–119.
  • Singh, S. P., Bassignana-Khadka, I., Singh Karky, B., & Sharma, E. (2011). Climate change in the Hindu Kush-Himalayas: The state of current knowledge. ICIMOD.
  • The Multiple Faces of “Feature Importance” in XGBoost. (2022). Retrieved from https://towardsdatascience.com/be-careful-when-interpreting-your-features-importance-in-xgboost-6e16132588e7
  • TreeSHAP. (2022). Retrieved from https://docs.seldon.io/projects/alibi/en/stable/methods/TreeSHAP.html
  • Trexler, A. (2015). Anthropocene fictions: The novel in a time of climate change. University of Virginia Press.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre ve İklim Finansmanı, Finansal Ekonometri
Bölüm Araştırma Makalesi
Yazarlar

Zozik Sabah 0000-0002-7867-8511

Şakir İşleyen 0000-0002-8186-1990

Yıldırım Demir 0000-0002-6350-8122

Gönderilme Tarihi 11 Aralık 2025
Kabul Tarihi 27 Aralık 2025
Yayımlanma Tarihi 27 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 20

Kaynak Göster

APA Sabah, Z., İşleyen, Ş., & Demir, Y. (2025). LOW-CARBON TECHNOLOGY TRADE AND CLIMATE DYNAMICS: A MACHINE LEARNING-BASED INVESTIGATION. Van Yüzüncü Yıl Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 10(20), 681-706. https://doi.org/10.54831/vanyyuiibfd.1840750

.......