Araştırma Makalesi
BibTex RIS Kaynak Göster

Efficacy of UV-C LED Irradiation in Reducing Foodborne Pathogenic Contamination on Japanese Quail Eggs

Yıl 2025, Cilt: 20 Sayı: 3, 126 - 132, 25.12.2025
https://doi.org/10.17094/vetsci.1704967

Öz

This study investigated the efficacy of ultraviolet-C (UV-C) irradiation in reducing surface contamination of Salmonella Typhimurium, Listeria monocytogenes, and Escherichia coli on Japanese quail eggshells. A total of 24 eggs were used; among them, six were analyzed to determine the baseline microbial load on the eggshell surface, while the remaining 18 were artificially inoculated and subjected to UV-C treatment using a commercial LED-based sterilization box at two exposure durations: 1 minute (27.24 mJ/cm²) and 3 minutes (81.72 mJ/cm²). The initial microbial loads on untreated quail eggs were 5.04 ± 0.49 log10 CFU/eggshell for total mesophilic aerobic bacteria and 2.31 ± 1.29 log10 CFU/eggshell for total coliforms. Microbial enumeration revealed a significant, dose dependent reduction in pathogen loads (p < 0.05). A 1-minute treatment resulted in around 3 log reductions for all pathogens, while the 3-minute treatment achieved up to 4.5 log reductions, particularly for E. coli and S. Typhimurium. These findings suggest that UV-C irradiation is a promising, non-thermal, and residue-free intervention to improve the microbial safety of quail eggs, though surface structure and exposure geometry remain critical factors for optimization.

Kaynakça

  • 1. Bao Z, Kang D, Li C, Zhang F, Lin S. Effect of salting on the water migration, physicochemical and textural characteristics, and microstructure of quail eggs. Lwt. 2020;132:109847.
  • 2. Güngören A, Güngören G, Şimşek ÜG, Yilmaz Ö, Bahşi M, Aslan S. Quality properties and fatty acids composition of breast meat from Japanese quails with different varieties grown under warm climate. Veterınarıa. 2023;72(2):163-173.
  • 3. Brasil YL, Cruz-Tirado JP, Barbin DF. Fast online estimation of quail eggs freshness using portable NIR spectrometer and machine learning. Food Control. 2022;131:108418.
  • 4. Oliveira G da S, McManus C, Salgado CB, et al. Antimicrobial Coating Based on Tahiti Lemon Essential Oil and Green Banana Flour to Preserve the Internal Quality of Quail Eggs. Animals. 2023;13(13):2123.
  • 5. Jung SJ, Park SY, Ha SD. Synergistic effect of X-rayirradiation and sodium hypochlorite against Salmonella enterica serovar Typhimurium biofilms on quail eggshells. Food Res Int. 2018;107:496-502.
  • 6. Park SY, Jung SJ, Ha SD. Bıldırcın yumurtası kabuklarındaki Salmonella Typhimurium biyofilmine karşı kombine X-ışını ve sulu klor dioksit uygulamalarının sinerjik etkileri. Lwt. 2018;92:54-60.
  • 7. Gayán E, Condón S, Álvarez I. Biological Aspects in Food Preservation by Ultraviolet Light: a Review. Food Bioprocess Technol. 2014;7(1):1-20.
  • 8. Rodriguez-Romo LA, Yousef AE. Inactivation of Salmonella enterica Serovar Enteritidis on Shell Eggs by Ozone and UV Radiation. J Food Protection. 2005;68(4):711-717.
  • 9. Koutchma T. Ultraviolet Light in Food Technology: Principles and Applications. 2nd ed. CRC Press; 2019.
  • 10. Calle A, Fernandez M, Montoya B, Schmidt M, Thompson J. UV-C LED Irradiation Reduces Salmonella on Chicken and Food Contact Surfaces. Foods. 2021;10(7):1459.
  • 11. Ramos GLPA, Esper LMR, Gonzalez AGM. A review on the application of UV-C treatment on food and food surfaces: association with food microbiology, predictive microbiology and quantitative microbial risk assessment. Int J Food Sci Technol. 2024;59(3):1187-1196.
  • 12. Pihen C, Mani-López E, Franco-Vega A, Jiménez-Munguía MT, López-Malo A, Ramírez-Corona N. Performance of UV-LED and UV-C treatments for the inactivation of Escherichia coli ATCC 25922 in food model solutions: Influence of optical and physical sample characteristics. Innovative Food Sci Emerg Technol. 2023;85:103314.
  • 13. ISO 4832:2006. ISO. Accessed May 15, 2025. https://www.iso.org/standard/38282.html
  • 14. Bacteriological Analytical Manual (BAM) | FDA. Accessed May 15, 2025. https://www.fda.gov/food/laboratory-methods-food/bacteriological-analytical-manual-bam
  • 15. Northcutt JK, Buyukyavuz A, Dawson PL. Quality of Japanese quail (Coturnix coturnix japonica) eggs after extended refrigerated storage. J Applied Poultry Res. 2022;31(3):100280.
  • 16. He Z, Chen X, Shi X, et al. Acetic acid, vinegar, and citric acid as washing materials for cuticle removal to improve hatching performance of quail eggs. Poultry Sci. 2020;99(8):3865-3876.
  • 17. Oliveira G da S, Vale IRR, de Jesus LM, et al. Coating Quail Eggs with a Bioactive Solution of Corn Starch and Green Propolis Extract. Coatings. 2025;15(5):573.
  • 18. M. El Malt L. An Assessment of the Microbiological Risks Involved with Quail Egg Qena City, Upper Egypt. Assiut Vet Med J. 2013; 59(139):99-106.
  • 19. Eroglu M, Erisir Z, Simsek UG, et al. Investigating the disinfecting efficacy of acetic and boric acid used by spraying on hatching goose eggs. Eur Poultry Sci. 2024;88:1-9.
  • 20. Eroglu M, Erisir Z, Simsek U, et al. Effects of washing dirty eggs of geese with boric acid and vinegar on hatchability and microbial loads. J Animal Plant Sci. 2025;35(2):354-363.
  • 21. İncili GK, Durmuşoğlu H, Güngören A, İlhak Oİ. Elazığ İlinde Satışa Sunulan Konvansiyonel (kafes tipi) ve Köy Yumurtalarının Mikrobiyolojik Kalitesinin Araştırılması. Dicle Üniv Vet Fak Derg. 2019;12(2):97-102.
  • 22. Sun W, Jing Z, Zhao Z, et al. Dose-Response Behavior of Pathogens and Surrogate Microorganisms across the Ultraviolet-C Spectrum: Inactivation Efficiencies, Action Spectra, and Mechanisms. Environ Sci Technol. 2023;57(29):10891-10900.
  • 23. Jaiaue P, Piluk J, Sawattrakool K, et al. Mathematical Modeling for Evaluating Inherent Parameters Affecting UVC Decontamination of Indicator Bacteria. Appl Environ Microbiol. 2022;88(7):e0214821.
  • 24. Ishida K, Matsubara M, Nagahashi M, et al. Efficacy of ultraviolet-light emitting diodes in bacterial inactivation and DNA damage via sensitivity evaluation using multiple wavelengths and bacterial strains. Arch Microbiol. 2025;207(6):130.
  • 25. Gayán E, Serrano MJ, Pagán R, Álvarez I, Condón S. Listeria monocytogenes’in UV-C direncini etkileyen çevresel ve biyolojik faktörler. Food Microbiol. 2015;46:246-253.
  • 26. Gabriel AA, Tongco AMP, Barnes AA. Utility of UV-C radiation as anti-Salmonella decontamination treatment for desiccated coconut flakes. Food Control. 2017;71:117-123.
  • 27. Atik A, Gumus T. The effect of different doses of UV-C treatment on microbiological quality of bovine milk. Lwt. 2021;136:110322.
  • 28. Hassan AB, Al Maiman SA, Sir Elkhatim KA, et al. Effect of UV-C radiation treatment on microbial load and antioxidant capacity in hot pepper, fennel and coriander. Lwt. 2020;134:109946.

Japon Bıldırcın Yumurtalarında Gıda Kaynaklı Patojenik Kontaminasyonun Azaltılmasinda UV-C Led Işınlamasının Etkinliği

Yıl 2025, Cilt: 20 Sayı: 3, 126 - 132, 25.12.2025
https://doi.org/10.17094/vetsci.1704967

Öz

Bu çalışma, ultraviyole-C (UV-C) ışınımının Japon bıldırcın yumurtalarının kabuk yüzeyinde Salmonella Typhimurium, Listeria monocytogenes ve Escherichia coli kontaminasyonunu azaltmadaki etkinliğini araştırmıştır. Toplamda 24 yumurta kullanılmıştır; bunlardan altısı yumurta kabuğu üzerindeki başlangıç mikrobiyal yükü belirlemek için analiz edilmiş, geri kalan 18’i ise patojenlerle kontamine edilerek ticari bir LED tabanlı sterilizatör ile UV-C uygulamasına tabi tutulmuştur. UV-C uygulaması iki farklı süreyle gerçekleştirilmiştir: 1 dakika (27,24 mJ/cm²) ve 3 dakika (81,72 mJ/cm²). UV-C uygulanmamış bıldırcın yumurtalarında başlangıçta belirlenen mikrobiyal yük, toplam mezofilik aerobik bakteri için 5,04 ± 0,49 log10 CFU/yumurta kabuğu ve toplam koliform bakteriler için 2,31 ± 1,29 log10 CFU/yumurta kabuğu olarak tespit edilmiştir. Mikrobiyal sayımlar, patojen yüklerinde anlamlı ve doza bağlı bir azalma olduğunu göstermiştir (P < ,05). Bir dakikalık uygulama tüm patojenler için yaklaşık 3,0 log10 azalma sağlarken, 3 dakikalık uygulama özellikle E. coli ve S. typhimurium için 4,5 log10’a kadar azalma elde edilmesini sağlamıştır. Bu bulgular, UV-C ışınımının bıldırcın yumurtalarının mikrobiyal güvenliğini artırmak için umut vadeden, ısıl olmayan ve kalıntı bırakmayan bir müdahale yöntemi olduğunu göstermektedir. Ancak yüzey yapısı ve ışığın yüzeye ulaşma geometrisi gibi etkenlerin, etkinliğin optimize edilmesinde kritik öneme sahip olduğu da unutulmamalıdır.

Kaynakça

  • 1. Bao Z, Kang D, Li C, Zhang F, Lin S. Effect of salting on the water migration, physicochemical and textural characteristics, and microstructure of quail eggs. Lwt. 2020;132:109847.
  • 2. Güngören A, Güngören G, Şimşek ÜG, Yilmaz Ö, Bahşi M, Aslan S. Quality properties and fatty acids composition of breast meat from Japanese quails with different varieties grown under warm climate. Veterınarıa. 2023;72(2):163-173.
  • 3. Brasil YL, Cruz-Tirado JP, Barbin DF. Fast online estimation of quail eggs freshness using portable NIR spectrometer and machine learning. Food Control. 2022;131:108418.
  • 4. Oliveira G da S, McManus C, Salgado CB, et al. Antimicrobial Coating Based on Tahiti Lemon Essential Oil and Green Banana Flour to Preserve the Internal Quality of Quail Eggs. Animals. 2023;13(13):2123.
  • 5. Jung SJ, Park SY, Ha SD. Synergistic effect of X-rayirradiation and sodium hypochlorite against Salmonella enterica serovar Typhimurium biofilms on quail eggshells. Food Res Int. 2018;107:496-502.
  • 6. Park SY, Jung SJ, Ha SD. Bıldırcın yumurtası kabuklarındaki Salmonella Typhimurium biyofilmine karşı kombine X-ışını ve sulu klor dioksit uygulamalarının sinerjik etkileri. Lwt. 2018;92:54-60.
  • 7. Gayán E, Condón S, Álvarez I. Biological Aspects in Food Preservation by Ultraviolet Light: a Review. Food Bioprocess Technol. 2014;7(1):1-20.
  • 8. Rodriguez-Romo LA, Yousef AE. Inactivation of Salmonella enterica Serovar Enteritidis on Shell Eggs by Ozone and UV Radiation. J Food Protection. 2005;68(4):711-717.
  • 9. Koutchma T. Ultraviolet Light in Food Technology: Principles and Applications. 2nd ed. CRC Press; 2019.
  • 10. Calle A, Fernandez M, Montoya B, Schmidt M, Thompson J. UV-C LED Irradiation Reduces Salmonella on Chicken and Food Contact Surfaces. Foods. 2021;10(7):1459.
  • 11. Ramos GLPA, Esper LMR, Gonzalez AGM. A review on the application of UV-C treatment on food and food surfaces: association with food microbiology, predictive microbiology and quantitative microbial risk assessment. Int J Food Sci Technol. 2024;59(3):1187-1196.
  • 12. Pihen C, Mani-López E, Franco-Vega A, Jiménez-Munguía MT, López-Malo A, Ramírez-Corona N. Performance of UV-LED and UV-C treatments for the inactivation of Escherichia coli ATCC 25922 in food model solutions: Influence of optical and physical sample characteristics. Innovative Food Sci Emerg Technol. 2023;85:103314.
  • 13. ISO 4832:2006. ISO. Accessed May 15, 2025. https://www.iso.org/standard/38282.html
  • 14. Bacteriological Analytical Manual (BAM) | FDA. Accessed May 15, 2025. https://www.fda.gov/food/laboratory-methods-food/bacteriological-analytical-manual-bam
  • 15. Northcutt JK, Buyukyavuz A, Dawson PL. Quality of Japanese quail (Coturnix coturnix japonica) eggs after extended refrigerated storage. J Applied Poultry Res. 2022;31(3):100280.
  • 16. He Z, Chen X, Shi X, et al. Acetic acid, vinegar, and citric acid as washing materials for cuticle removal to improve hatching performance of quail eggs. Poultry Sci. 2020;99(8):3865-3876.
  • 17. Oliveira G da S, Vale IRR, de Jesus LM, et al. Coating Quail Eggs with a Bioactive Solution of Corn Starch and Green Propolis Extract. Coatings. 2025;15(5):573.
  • 18. M. El Malt L. An Assessment of the Microbiological Risks Involved with Quail Egg Qena City, Upper Egypt. Assiut Vet Med J. 2013; 59(139):99-106.
  • 19. Eroglu M, Erisir Z, Simsek UG, et al. Investigating the disinfecting efficacy of acetic and boric acid used by spraying on hatching goose eggs. Eur Poultry Sci. 2024;88:1-9.
  • 20. Eroglu M, Erisir Z, Simsek U, et al. Effects of washing dirty eggs of geese with boric acid and vinegar on hatchability and microbial loads. J Animal Plant Sci. 2025;35(2):354-363.
  • 21. İncili GK, Durmuşoğlu H, Güngören A, İlhak Oİ. Elazığ İlinde Satışa Sunulan Konvansiyonel (kafes tipi) ve Köy Yumurtalarının Mikrobiyolojik Kalitesinin Araştırılması. Dicle Üniv Vet Fak Derg. 2019;12(2):97-102.
  • 22. Sun W, Jing Z, Zhao Z, et al. Dose-Response Behavior of Pathogens and Surrogate Microorganisms across the Ultraviolet-C Spectrum: Inactivation Efficiencies, Action Spectra, and Mechanisms. Environ Sci Technol. 2023;57(29):10891-10900.
  • 23. Jaiaue P, Piluk J, Sawattrakool K, et al. Mathematical Modeling for Evaluating Inherent Parameters Affecting UVC Decontamination of Indicator Bacteria. Appl Environ Microbiol. 2022;88(7):e0214821.
  • 24. Ishida K, Matsubara M, Nagahashi M, et al. Efficacy of ultraviolet-light emitting diodes in bacterial inactivation and DNA damage via sensitivity evaluation using multiple wavelengths and bacterial strains. Arch Microbiol. 2025;207(6):130.
  • 25. Gayán E, Serrano MJ, Pagán R, Álvarez I, Condón S. Listeria monocytogenes’in UV-C direncini etkileyen çevresel ve biyolojik faktörler. Food Microbiol. 2015;46:246-253.
  • 26. Gabriel AA, Tongco AMP, Barnes AA. Utility of UV-C radiation as anti-Salmonella decontamination treatment for desiccated coconut flakes. Food Control. 2017;71:117-123.
  • 27. Atik A, Gumus T. The effect of different doses of UV-C treatment on microbiological quality of bovine milk. Lwt. 2021;136:110322.
  • 28. Hassan AB, Al Maiman SA, Sir Elkhatim KA, et al. Effect of UV-C radiation treatment on microbial load and antioxidant capacity in hot pepper, fennel and coriander. Lwt. 2020;134:109946.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Gıda Hijyeni ve Teknolojisi
Bölüm Araştırma Makalesi
Yazarlar

Alper Güngören 0000-0001-7818-1372

Gönderilme Tarihi 23 Mayıs 2025
Kabul Tarihi 15 Ekim 2025
Yayımlanma Tarihi 25 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 20 Sayı: 3

Kaynak Göster

APA Güngören, A. (2025). Efficacy of UV-C LED Irradiation in Reducing Foodborne Pathogenic Contamination on Japanese Quail Eggs. Veterinary Sciences and Practices, 20(3), 126-132. https://doi.org/10.17094/vetsci.1704967
AMA 1.Güngören A. Efficacy of UV-C LED Irradiation in Reducing Foodborne Pathogenic Contamination on Japanese Quail Eggs. Veterinary Sciences and Practices. 2025;20(3):126-132. doi:10.17094/vetsci.1704967
Chicago Güngören, Alper. 2025. “Efficacy of UV-C LED Irradiation in Reducing Foodborne Pathogenic Contamination on Japanese Quail Eggs”. Veterinary Sciences and Practices 20 (3): 126-32. https://doi.org/10.17094/vetsci.1704967.
EndNote Güngören A (01 Aralık 2025) Efficacy of UV-C LED Irradiation in Reducing Foodborne Pathogenic Contamination on Japanese Quail Eggs. Veterinary Sciences and Practices 20 3 126–132.
IEEE [1]A. Güngören, “Efficacy of UV-C LED Irradiation in Reducing Foodborne Pathogenic Contamination on Japanese Quail Eggs”, Veterinary Sciences and Practices, c. 20, sy 3, ss. 126–132, Ara. 2025, doi: 10.17094/vetsci.1704967.
ISNAD Güngören, Alper. “Efficacy of UV-C LED Irradiation in Reducing Foodborne Pathogenic Contamination on Japanese Quail Eggs”. Veterinary Sciences and Practices 20/3 (01 Aralık 2025): 126-132. https://doi.org/10.17094/vetsci.1704967.
JAMA 1.Güngören A. Efficacy of UV-C LED Irradiation in Reducing Foodborne Pathogenic Contamination on Japanese Quail Eggs. Veterinary Sciences and Practices. 2025;20:126–132.
MLA Güngören, Alper. “Efficacy of UV-C LED Irradiation in Reducing Foodborne Pathogenic Contamination on Japanese Quail Eggs”. Veterinary Sciences and Practices, c. 20, sy 3, Aralık 2025, ss. 126-32, doi:10.17094/vetsci.1704967.
Vancouver 1.Güngören A. Efficacy of UV-C LED Irradiation in Reducing Foodborne Pathogenic Contamination on Japanese Quail Eggs. Veterinary Sciences and Practices [Internet]. 01 Aralık 2025;20(3):126-32. Erişim adresi: https://izlik.org/JA83ZD97NC

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

2987230564