CNT Supported Bimetallic Ru-Mo Catalyst for the Detection of L-Histidine
Yıl 2024,
Cilt: 2 Sayı: 2, 22 - 30, 20.12.2024
Ömrüye Özok Arıcı
,
Hilal Demir Kıvrak
,
Aykut Çağlar
,
Arif Kıvrak
Öz
In this study, a voltammetric L-Histidine (His) sensor is being developed with glassy carbon electrode (GCE) modified with carbon nanotube (CNT) supported Ru-Mo bimetallic catalyst. The Ru-Mo/CNT catalyst was prepared by sodium borohydride reduction method. It was identified by surface analytical methods like scanning electron microscopy (SEM) and X-ray diffraction (XRD).
Characterization results reveal that this catalyst was successfully synthesized. The modified GCE's electrochemical activity was investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS).
The Ru-Mo/CNT-modified GCE electrode has a sensitivity of 0.0002 mA/cm2, a limit of detection (LOD) of 0.02 µM for histidine, and a lower limit of detection (LOQ) of 0.06 µM, according to electrochemical data. The findings demonstrate that the Ru-Mo/CNT-modified GCE electrode is a promising catalyst for the sensitive detection of L-histidine and has been manufactured for the first time in the literature.
Kaynakça
- [1] S. Shahrokhian, (2001). Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Analytical Chemistry, 73(24), 5972-5978.
- [2] C.G. Nan, W.X. Ping, D.J. Ping, C.H. Qing, (1999). A study on electrochemistry of histidine and its metabolites based on the diazo coupling reaction. Talanta, 49(2), 319-330.
- [3] A. Torrado, G.K. Walkup, B. Imperiali, (1998). Exploiting polypeptide motifs for the design of selective Cu (II) ion chemosensors. Journal of the American Chemical Society, 120(3), 609-610.
- [4] C.S. Lee, P.F. Teng, W.L. Wong, H.L. Kwong, A.S. Chan, (2005). New C2-symmetric 2, 2′-bipyridine crown macrocycles for enantioselective recognition of amino acid derivatives. Tetrahedron, 61(33), 7924-7930.
- [5] J. Wang, M.P. Chatrathi, B. Tian, (2000). Micromachined separation chips with a precolumn reactor and end-column electrochemical detector. Analytical chemistry, 72(23), 5774-5778.
- [6] D. Vardanega, C. Girardet, (2009). Nonlinear polarization effects in superchiral nanotube sensors of amino acids. Chemical Physics Letters, 469(1-3), 172-176.
- [7] S. Ouchemoukh, N. Amessis-Ouchemoukh, M. Gómez-Romero, F. Aboud, A. Giuseppe, A. Fernández-Gutiérrez, A. Segura-Carretero, (2017). Characterisation of phenolic compounds in Algerian honeys by RP-HPLC coupled to electrospray time-of-flight mass spectrometry. LWT-Food Science and Technology, 85, 460-469.
- [8] V. M. Gumerov, E. P. Andrianova, M. A. Matilla, K. M. Page, E. Monteagudo-Cascales, A. C. Dolphin, I. B. Zhulin, (2022). Amino acid sensor conserved from bacteria to humans. Proceedings of the National Academy of Sciences, 119(10), e2110415119.
- [9] H. Çelik Kazıcı, A. Caglar, T. Aydogmus, N. Aktas, H. Kivrak, (2018). Microstructured prealloyed Titanium-Nickel powder as a novel nonenzymatic hydrogen peroxide sensor, Journal of Colloid and Interface Science, 530 353-360.
- [10] K. Tian, S. Alex, G. Siegel, A. Tiwari, (2015). Enzymatic glucose sensor based on Au nanoparticle and plant-like ZnO film modified electrode. Materials Science and Engineering: C, 46, 548-552.
- [11] H. Kivrak, O. F. Er, O. Ozok, S. Celik, A. Kivrak, (2022). Synthesis and characterization of 4-(2-(4-methoxyphenyl) benzo [b] thiophen-3-yl) benzaldehyde for carbohydrate antigen 125 electrochemical detection and molecular docking modeling. Materials Chemistry and Physics, 281, 125951.
- [12] A.R. Ferhan, J.A. Jackman, J.H. Park, N.J. Cho, D.H. Kim, (2018). Nanoplasmonic sensors for detecting circulating cancer biomarkers. Advanced drug delivery reviews, 125, 48-77.
- [13] M. Heidari, A. Ghaffarinejad, (2019). Electrochemical sensor for L-cysteine by using a cobalt (II)/aluminum (III) layered double hydroxide as a nanocatalyst. Microchimica Acta, 186, 1-7.
- [14] S. Zhou, Z. Deng, Z. Wu, M. Xie, Y. Tian, Y. Wu, J. Liu, G. Li, Q. He, (2019). Ta2O5/rGO nanocomposite modified electrodes for detection of tryptophan through electrochemical route. Nanomaterials, 9(6), 811.
- [15] B. Nohwal, R. Chaudhary, C.S. Pundir, (2020). Amperometric l-lysine determination biosensor amplified with l-lysine oxidase nanoparticles and graphene oxide nanoparticles. Process Biochemistry, 97, 57-63.
- [16] W. Dai, H. Li, M. Li, C. Li, X. Wu, B. Yang, (2015). Electrochemical imprinted polycrystalline nickel–nickel oxide half-nanotube-modified boron-doped diamond electrode for the detection of l-serine. ACS applied materials & interfaces, 7(41), 22858-22867.
- [17] M. Hasanzadeh, H.N. Baghban, N. Shadjou, (2018). Non-enzymatic determination of L-Proline amino acid in unprocessed human plasma sample using hybrid of graphene quantum dots decorated with gold nanoparticles and poly cysteine: a novel signal amplification strategy. Analytical Sciences, 34(3), 355-362.
- [18] H. Liu, J. Shao, L. Shi, W. Ke, F. Zheng, Y. Zhao, (2020). Electroactive NPs and D-amino acids oxidase engineered electrochemical chiral sensor for D-alanine detection. Sensors and Actuators B: Chemical, 304, 127333.
- [19] B. Ulas, A. Caglar, S. Yılmaz, U. Ecer, Y. Yilmaz, T. Sahan, H. Kivrak, (2019). Towards more active and stable PdAgCr electrocatalysts for formic acid electrooxidation: the role of optimization via response surface methodology. International Journal of Energy Research, 43(15), 8985-9000.
- [20] M.J.A. Abbas, A. Caglar, H. Kivrak, (2024). The synthesis and characterization of carbon nanotube-supported CuBi catalyst for H2 production from NaBH4 methanolysis. Process Safety and Environmental Protection, 185, 96-104.
- [21] A. Biswas, S. Paul, A. Banerjee, (2015). Carbon nanodots, Ru nanodots and hybrid nanodots: preparation and catalytic properties. Journal of Materials Chemistry A, 3(29), 15074-15081.
- [22] G. Zhang, T. Chen, Y. Zhang, T. Liu, G. Wang, (2020). Effective conversion of cellulose to sorbitol catalyzed by mesoporous carbon supported ruthenium combined with zirconium phosphate. Catalysis Letters, 150, 2294-2303.
L-Histidinin tespiti için CNT Destekli Bimetalik Ru-Mo Katalizörü
Yıl 2024,
Cilt: 2 Sayı: 2, 22 - 30, 20.12.2024
Ömrüye Özok Arıcı
,
Hilal Demir Kıvrak
,
Aykut Çağlar
,
Arif Kıvrak
Öz
Bu çalışmada, karbon nanotüp (CNT) destekli Ru-Mo bimetalik katalizörle modifiye edilmiş camsı karbon elektrot (GCE) ile bir voltametrik L-Histidin (His) sensörü geliştirilmektedir.Ru-Mo/CNT, katalizörü, sodyum borohidrit indirgeme yöntemiyle hazırlandı. X-ışını kırınımı (XRD) ve taramalı elektron mikroskobu (SEM) gibi yüzey analitik teknikleri ile karakterize edildi. Karakterizasyon sonuçları bu katalizörün başarıyla sentezlendiğini ortaya koymaktadır. Karakterizasyon sonuçları bu katalizörün başarıyla sentezlendiğini ortaya koymaktadır. Modifiye edilmiş GCE'nin elektrokimyasal davranışını incelemek için elektrokimyasal empedans spektroskopisi (EIS), diferansiyel darbe voltametrisi (DPV) ve döngüsel voltametri (CV) kullanılmıştır. Elektrokimyasal sonuçlar, Ru-Mo/CNT ile modifiye edilmiş GCE elektrotunun 0.0002 mA/cm2 duyarlılığına, histidin için tespit limiti (LOD) 0.02 µM ve alt tayin sınırına (LOQ) 0.06 µM'ye sahip olduğunu göstermektedir. Sonuç olarak, sonuçlar Ru-Mo/CNT ile modifiye edilmiş GCE elektrotunun literatürde ilk kez sentezlendiğini ve L-histidinin hassas tespiti için umut verici bir katalizör olduğunu göstermektedir.
Kaynakça
- [1] S. Shahrokhian, (2001). Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Analytical Chemistry, 73(24), 5972-5978.
- [2] C.G. Nan, W.X. Ping, D.J. Ping, C.H. Qing, (1999). A study on electrochemistry of histidine and its metabolites based on the diazo coupling reaction. Talanta, 49(2), 319-330.
- [3] A. Torrado, G.K. Walkup, B. Imperiali, (1998). Exploiting polypeptide motifs for the design of selective Cu (II) ion chemosensors. Journal of the American Chemical Society, 120(3), 609-610.
- [4] C.S. Lee, P.F. Teng, W.L. Wong, H.L. Kwong, A.S. Chan, (2005). New C2-symmetric 2, 2′-bipyridine crown macrocycles for enantioselective recognition of amino acid derivatives. Tetrahedron, 61(33), 7924-7930.
- [5] J. Wang, M.P. Chatrathi, B. Tian, (2000). Micromachined separation chips with a precolumn reactor and end-column electrochemical detector. Analytical chemistry, 72(23), 5774-5778.
- [6] D. Vardanega, C. Girardet, (2009). Nonlinear polarization effects in superchiral nanotube sensors of amino acids. Chemical Physics Letters, 469(1-3), 172-176.
- [7] S. Ouchemoukh, N. Amessis-Ouchemoukh, M. Gómez-Romero, F. Aboud, A. Giuseppe, A. Fernández-Gutiérrez, A. Segura-Carretero, (2017). Characterisation of phenolic compounds in Algerian honeys by RP-HPLC coupled to electrospray time-of-flight mass spectrometry. LWT-Food Science and Technology, 85, 460-469.
- [8] V. M. Gumerov, E. P. Andrianova, M. A. Matilla, K. M. Page, E. Monteagudo-Cascales, A. C. Dolphin, I. B. Zhulin, (2022). Amino acid sensor conserved from bacteria to humans. Proceedings of the National Academy of Sciences, 119(10), e2110415119.
- [9] H. Çelik Kazıcı, A. Caglar, T. Aydogmus, N. Aktas, H. Kivrak, (2018). Microstructured prealloyed Titanium-Nickel powder as a novel nonenzymatic hydrogen peroxide sensor, Journal of Colloid and Interface Science, 530 353-360.
- [10] K. Tian, S. Alex, G. Siegel, A. Tiwari, (2015). Enzymatic glucose sensor based on Au nanoparticle and plant-like ZnO film modified electrode. Materials Science and Engineering: C, 46, 548-552.
- [11] H. Kivrak, O. F. Er, O. Ozok, S. Celik, A. Kivrak, (2022). Synthesis and characterization of 4-(2-(4-methoxyphenyl) benzo [b] thiophen-3-yl) benzaldehyde for carbohydrate antigen 125 electrochemical detection and molecular docking modeling. Materials Chemistry and Physics, 281, 125951.
- [12] A.R. Ferhan, J.A. Jackman, J.H. Park, N.J. Cho, D.H. Kim, (2018). Nanoplasmonic sensors for detecting circulating cancer biomarkers. Advanced drug delivery reviews, 125, 48-77.
- [13] M. Heidari, A. Ghaffarinejad, (2019). Electrochemical sensor for L-cysteine by using a cobalt (II)/aluminum (III) layered double hydroxide as a nanocatalyst. Microchimica Acta, 186, 1-7.
- [14] S. Zhou, Z. Deng, Z. Wu, M. Xie, Y. Tian, Y. Wu, J. Liu, G. Li, Q. He, (2019). Ta2O5/rGO nanocomposite modified electrodes for detection of tryptophan through electrochemical route. Nanomaterials, 9(6), 811.
- [15] B. Nohwal, R. Chaudhary, C.S. Pundir, (2020). Amperometric l-lysine determination biosensor amplified with l-lysine oxidase nanoparticles and graphene oxide nanoparticles. Process Biochemistry, 97, 57-63.
- [16] W. Dai, H. Li, M. Li, C. Li, X. Wu, B. Yang, (2015). Electrochemical imprinted polycrystalline nickel–nickel oxide half-nanotube-modified boron-doped diamond electrode for the detection of l-serine. ACS applied materials & interfaces, 7(41), 22858-22867.
- [17] M. Hasanzadeh, H.N. Baghban, N. Shadjou, (2018). Non-enzymatic determination of L-Proline amino acid in unprocessed human plasma sample using hybrid of graphene quantum dots decorated with gold nanoparticles and poly cysteine: a novel signal amplification strategy. Analytical Sciences, 34(3), 355-362.
- [18] H. Liu, J. Shao, L. Shi, W. Ke, F. Zheng, Y. Zhao, (2020). Electroactive NPs and D-amino acids oxidase engineered electrochemical chiral sensor for D-alanine detection. Sensors and Actuators B: Chemical, 304, 127333.
- [19] B. Ulas, A. Caglar, S. Yılmaz, U. Ecer, Y. Yilmaz, T. Sahan, H. Kivrak, (2019). Towards more active and stable PdAgCr electrocatalysts for formic acid electrooxidation: the role of optimization via response surface methodology. International Journal of Energy Research, 43(15), 8985-9000.
- [20] M.J.A. Abbas, A. Caglar, H. Kivrak, (2024). The synthesis and characterization of carbon nanotube-supported CuBi catalyst for H2 production from NaBH4 methanolysis. Process Safety and Environmental Protection, 185, 96-104.
- [21] A. Biswas, S. Paul, A. Banerjee, (2015). Carbon nanodots, Ru nanodots and hybrid nanodots: preparation and catalytic properties. Journal of Materials Chemistry A, 3(29), 15074-15081.
- [22] G. Zhang, T. Chen, Y. Zhang, T. Liu, G. Wang, (2020). Effective conversion of cellulose to sorbitol catalyzed by mesoporous carbon supported ruthenium combined with zirconium phosphate. Catalysis Letters, 150, 2294-2303.