ORTA YOĞUNLUKLU LİF LEVHALARDA KULLANILAN GENİŞLETİLMİŞ VERMİKÜLİTİN TERMAL VE YANGINA DAYANIKLILIK, HİGROSKOPİK, FİZİKSEL VE MEKANİK ÖZELLİKLERİNİN ARAŞTIRILMASI
Yıl 2025,
Cilt: 7 Sayı: 2, 12 - 21, 31.12.2025
Seda Nur Demirel
,
Fatih Mengeloğlu
Öz
Bu çalışmada, iyi bilinen bir yangın dirençli malzeme olan genişletilmiş vermikülit içeren orta yoğunluklu fiber levhanın (MDF) yanıcılık davranışı, sınır oksijen indeksi (LOI), koni kalorimetrisi, formaldehit emisyonu ve perforatör ölçümleri kullanılarak değerlendirilmiştir. Ayrıca, vermikülitin magnezyum alüminosilikat kil minerali olması nedeniyle MDF'nin suyla ilgili özellikleri üzerindeki etkisi araştırılmıştır. MDF paneller melamin-üre-formaldehit (MUF) yapıştırıcı ile yapıştırılmış ve fiziksel ve mekanik özellikleri de karakterize edilmiştir. LOI sonuçları, vermikülit-lif (V/F) oranının artmasıyla oksijen indeksi değerlerinde kademeli bir iyileşme olduğunu göstermiştir. Konik kalorimetre testleri, tutuşma süresinde bir artış ve ısı salım hızında (HRR) bir azalma olduğunu göstererek vermikülitin yangın performansı üzerindeki olumlu etkisini doğruladı. MUF reçinesi kullanılmasına rağmen, paneller nispeten yüksek formaldehit emisyon seviyeleri sergiledi. Ayrıca, V/F içeriğinin artması, MDF yapısı içinde magnezyum alüminosilikat kil minerali olarak genişlemiş vermikülitin varlığına atfedilen kalınlık şişmesi ve su emme davranışında iyileşmeye yol açtı.
Etik Beyan
Bu makalede sunulan tüm veriler, analizler ve sonuçlar, yazarlar tarafından orijinal olarak üretilmiştir ve
başka herhangi bir çalışmadan kopyalanmamış veya uygunsuz bir şekilde türetilmemiştir. Çalışma boyunca kullanılan tüm kaynaklar
uygun şekilde alıntılanmıştır. Yazar(lar), bu makalenin mevcut haliyle başka hiçbir dergiye veya platforma sunulmadığını veya
incelenmediğini beyan eder. Ayrıca, yazarlar herhangi bir çıkar çatışması olmadığını bildirir
ve araştırma süreci boyunca etik ilkelere tam olarak uyulduğunu teyit eder.
Destekleyen Kurum
Kahramanmaras Sütçü İmam Üniversitesi
Teşekkür
Deney çalışmaları, hammadde temini ve laboratuvar testleri konusunda değerli yardımları için Kastamonu Entegre çalışanlarına içten teşekkürlerimi sunarım.
Kaynakça
-
Akbulut T. (1999). General status of the MDF industry in the world and in Turkey. LAMİNArT: Furniture & Decoration & Art & Design Journal, (3), August–September. https://doi.org/10.5152/forestist.2021.20056
-
Ariturk B., Bilge K., Seven N., & Menceloğlu Y. (2024). Morphological adaptation of expanded vermiculite in polylactic acid and polypropylene matrices for superior thermoplastic composites. Polymer Composites. https://doi.org/10.1002/pc.28108
-
Ashori, A. (2008). Wood–plastic composites as promising green-composites for automotive industries! Bioresource Technology, 99(11), 4661–4667. https://doi.org/10.1016/j.biortech.2007.09.043
-
ASTM International. (2019a). ASTM D2863–19: Standard test method for measuring the minimum oxygen concentration to support candle-like combustion of plastics (oxygen index). West Conshohocken, PA.
-
ASTM International. (2019b). ASTM D6007–19: Standard test method for determining formaldehyde concentrations in air from wood products using a small chamber. West Conshohocken, PA.
-
ASTM International. (2020). ASTM E1333–20: Standard test method for determining formaldehyde concentrations in air and emission rates from wood products using a large chamber. West Conshohocken, PA.
-
Ayrilmis N., Buyuksari U. and Avci E. (2010). Utilization of waste tire rubber in the manufacturing of particleboard. Materials & Design, 31(1), 684–689. https://doi.org/10.1016/j.matdes.2009.08.008
-
Cardozo N. S. M., Carvalho A. G. & Batalha L. A. R. (2023). Evaluation of the emission of formaldehyde from wood-based panels (MDF and MDP) in Brazil after use. Floresta e Ambiente, 30(2). https://doi.org/10.1590/2179-8087-FLORAM-2022-0079
-
Chinar M. (2018). Investigation of the effect of production factors on formaldehyde emission in particleboards (Master's thesis).
-
Diler H., Durmaz S., Acar M., Aras U. & Erdil Y. Z. (2024). The effect of vermiculite on flame retardancy and physical and mechanical properties of wood–plastic composites. BioResources, 19(2), 3121–3140. https://doi.org/10.15376/biores.19.1.183-194
-
Essabir H., Nekhlaoui S., Malha M., Bensalah M. O. Arrakhiz F. Z. Qaiss A. & Bouhfid R. (2013). Bio-composites based on polypropylene reinforced with Nut-shells of Argan: Mechanical and thermal properties. Materials & Design, 51, 787–794. https://doi.org/10.1016/j.matdes.2013.04.088
-
International Organization for Standardization. (2015a). EN ISO 5660-1: Reaction-to-fire tests — Heat release, smoke production and mass loss rate — Part 1: Heat release rate (cone calorimeter method). Geneva, Switzerland.
International Organization for Standardization. (2015b). EN ISO 5660-2: Reaction-to-fire tests — Heat release, smoke production and mass loss rate — Part 2: Smoke production rate (dynamic measurement). Geneva, Switzerland.
-
Kelly M. W. (1977). Critical literature review of relationships between processing parameters and physical properties of particleboard (General Technical Report FPL-10). U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. https://www.fpl.fs.usda.gov/documnts/fplgtr/fplgtr10.pdf
-
Kozłowski, R., Mieleniak, B., Helwig, M., & Przepiera, A. (1999). Flame-resistant lignocellulosic–mineral composite particleboards. Polymer Degradation and Stability, 64(3), 523–528. https://doi.org/10.1016/S0141-3910(98)00145-1
-
Li X., Lei B., Lin Z., Huang L., Tan S. & Cai X. (2013a). The utilization of organic vermiculite to reinforce wood–plastic composites with higher flexural and tensile properties. Industrial Crops and Products, 51, 310–316. https://doi.org/10.1016/j.indcrop.2013.09.004
-
Li X., Cai Z., Winandy J. E. & Basta A. H. (2013b). Moisture-related dimensional changes in wood and wood composites. BioResources, 3(4), 1244–1255. https://doi.org/10.15376/biores.3.4.1244-1255
-
Li X., Wu Y. Liu Q. and Li Y. (2020). Flammability and thermal degradation of wood-plastic composites reinforced with vermiculite. Journal of Applied Polymer Science, 137(15), 48567. https://doi.org/10.1002/app.48567
-
Maloney T. M. (1993). Modern particleboard and dry-process fiberboard manufacturing. Miller Freeman. (This source is a printed book and does not have a DOI number because the publisher has not assigned a digital DOI).
-
Miotto J. L., Soratto D. N. & Mascarenhas A. R. P. (2021). Physical and mechanical properties of particleboard produced with vermiculite and Pinus elliottii wood. BioResources, 16(2), 3369–3380. https://doi.org/10.15376/biores.16.2.3369-3380.
-
Rowell R. M. (Ed.). (2005). Handbook of wood chemistry and wood composites. CRC Press.
-
Savastano Jr. H., Warden P. G. & Coutts R. S. P. (2003). Potential of Brazilian vegetable fibres in cement-bonded panels. Industrial Crops and Products, 18(2), 107–115. https://doi.org/10.1016/S0926-6690(03)00034-2
-
Savastano H., Warden P. G., & Coutts R. S. P. (2003). Assessment of alternative fibres for wood–cement composites. Cement and Concrete Composites, 25(1), 27–35. https://doi.org/10.1016/S0958-9465(01)00066-4
-
Suchsland, O., & Woodson, G. E. (1987). Fiberboard manufacturing practices in the United States (Agriculture Handbook No. 640). U.S. Department of Agriculture, Forest Service. https://doi.org/10.5962/bhl.title.121752
-
Sun J. et al. (2007). Flame retardant performance of wood-based panels evaluated by cone calorimetry. (Reference for Sun et al. 2007 citation in text).
-
Tudor H. E. M., Barbu M. C., Petutschnigg A. & Reh R. (2018). Fire resistance of wood-based panels: The effect of expanded vermiculite. Pro Ligno, 14(4), 25–30. http://www.proligno.ro/en/articles/2018/4/Tudor_Final.pdf
-
Turkish Standards Institution. (1999a). TS EN 120: Wood-based panels — Determination of formaldehyde content — Extraction method (Perforator method). Ankara, Turkey.
-
Turkish Standards Institution. (1999b). TS EN 310: Wood-based panels — Determination of modulus of elasticity in bending and of bending strength. Ankara, Turkey.
-
Turkish Standards Institution. (1999c). TS EN 317: Particleboards and fibreboards — Determination of swelling in thickness after immersion in water. Ankara, Turkey.
-
Turkish Standards Institution. (2011). TS EN 311: Wood-based panels — Surface soundness — Test method. Ankara, Turkey.
-
Wang Q., Li J., Winandy J. E. & Yong Z. (2016). Thermal stability and fire performance of vermiculite-modified MDF: A TG, DSC, and LOI study. Construction and Building Materials, 115, 586–594. https://doi.org/10.1016/j.conbuildmat.2016.04.034
-
White, R. H. & Sumathipala, K. (2013). Cone calorimeter tests of wood composites. U.S. Forest Service Forest Products Laboratory.
-
Wong E. D., Zhang M., Wang Q. & Kawai S. (1999). Formation of the density profile and its effects on the properties of fiberboard. Journal of Wood Science, 45(4), 327–333. https://doi.org/10.1007/BF00833502
-
Xue B., Wen J., Zhang R. & Li X. (2019). Mechanical properties and flame retardancy of wood fiber/expanded vermiculite/gypsum composite. Construction and Building Materials, 223, 858–867. https://doi.org/10.1016/j.conbuildmat.2019.06.222
-
Yeh S. K. & Gupta R. K. (2013). The utilization of wood flour for wood–plastic composites: Part I. Thermal and mechanical properties. Journal of Composite Materials, 47(2), 173–182.
-
Zhang Y., Xu M. & Zhang Y. (2016). Effects of expanded vermiculite on the properties of wood-flour/polypropylene composites. Construction and Building Materials, 102, 856–863. https://doi.org/10.1016/j.conbuildmat.2015.11.028
-
Zhu Y. & Liang W. (2025). Effect of temperature and heat transfer on formaldehyde emissions from the medium-density fiberboard: An experimental investigation. Building and Environment, 283, 113431.
INVESTIGATION OF THERMAL AND FIRE RESISTANCE, HYGROSCOPIC, PHYSICAL, AND MECHANICAL PROPERTIES OF EXPANDED VERMICULITE USED IN MEDIUM-DENSITY FIBERBOARDS
Yıl 2025,
Cilt: 7 Sayı: 2, 12 - 21, 31.12.2025
Seda Nur Demirel
,
Fatih Mengeloğlu
Öz
In this study, the flammability behaviour of medium-density fibreboard (MDF) incorporating expanded vermiculite, a well-known fire-resistant material, was evaluated using limiting oxygen index (LOI), cone calorimetry, formaldehyde emission, and perforator measurements. In addition, the influence of vermiculite on the water-related properties of MDF was investigated, owing to its nature as a magnesium aluminosilicate clay mineral. The MDF panels were bonded with a melamine–urea–formaldehyde (MUF) adhesive, and their physical and mechanical properties were also characterised. The LOI results indicated a progressive improvement in oxygen index values with increasing vermiculite-to-fibre (V/F) ratio. Cone calorimeter tests showed an increase in time to ignition and a reduction in heat release rate (HRR), confirming the positive effect of vermiculite on fire performance. Despite the use of MUF resin, the panels exhibited relatively high formaldehyde emission levels. Furthermore, increasing V/F content led to improved thickness swelling and water absorption behaviour, which is attributed to the presence of expanded vermiculite as a magnesium aluminosilicate clay mineral within the MDF structure.
Etik Beyan
All data, analyses, and results presented in this article are originally produced by the authors and have not
been copied from or improperly derived from any other work. all sources used throughout the study have
been properly cited. the author(s) declare that this article has not been submitted to, nor is it under
review by, any other journal or platform in its current form. furthermore, the authors report no conflicts
of interest and confirm full compliance with ethical principles throughout the research process.
Destekleyen Kurum
Kahramanmaras Sutcu Imam University
Teşekkür
I would like to express my sincere gratitude to the staff of Kastamonu Entegre for their valuable assistance with the experimental work, raw material supply, and laboratory testing.
Kaynakça
-
Akbulut T. (1999). General status of the MDF industry in the world and in Turkey. LAMİNArT: Furniture & Decoration & Art & Design Journal, (3), August–September. https://doi.org/10.5152/forestist.2021.20056
-
Ariturk B., Bilge K., Seven N., & Menceloğlu Y. (2024). Morphological adaptation of expanded vermiculite in polylactic acid and polypropylene matrices for superior thermoplastic composites. Polymer Composites. https://doi.org/10.1002/pc.28108
-
Ashori, A. (2008). Wood–plastic composites as promising green-composites for automotive industries! Bioresource Technology, 99(11), 4661–4667. https://doi.org/10.1016/j.biortech.2007.09.043
-
ASTM International. (2019a). ASTM D2863–19: Standard test method for measuring the minimum oxygen concentration to support candle-like combustion of plastics (oxygen index). West Conshohocken, PA.
-
ASTM International. (2019b). ASTM D6007–19: Standard test method for determining formaldehyde concentrations in air from wood products using a small chamber. West Conshohocken, PA.
-
ASTM International. (2020). ASTM E1333–20: Standard test method for determining formaldehyde concentrations in air and emission rates from wood products using a large chamber. West Conshohocken, PA.
-
Ayrilmis N., Buyuksari U. and Avci E. (2010). Utilization of waste tire rubber in the manufacturing of particleboard. Materials & Design, 31(1), 684–689. https://doi.org/10.1016/j.matdes.2009.08.008
-
Cardozo N. S. M., Carvalho A. G. & Batalha L. A. R. (2023). Evaluation of the emission of formaldehyde from wood-based panels (MDF and MDP) in Brazil after use. Floresta e Ambiente, 30(2). https://doi.org/10.1590/2179-8087-FLORAM-2022-0079
-
Chinar M. (2018). Investigation of the effect of production factors on formaldehyde emission in particleboards (Master's thesis).
-
Diler H., Durmaz S., Acar M., Aras U. & Erdil Y. Z. (2024). The effect of vermiculite on flame retardancy and physical and mechanical properties of wood–plastic composites. BioResources, 19(2), 3121–3140. https://doi.org/10.15376/biores.19.1.183-194
-
Essabir H., Nekhlaoui S., Malha M., Bensalah M. O. Arrakhiz F. Z. Qaiss A. & Bouhfid R. (2013). Bio-composites based on polypropylene reinforced with Nut-shells of Argan: Mechanical and thermal properties. Materials & Design, 51, 787–794. https://doi.org/10.1016/j.matdes.2013.04.088
-
International Organization for Standardization. (2015a). EN ISO 5660-1: Reaction-to-fire tests — Heat release, smoke production and mass loss rate — Part 1: Heat release rate (cone calorimeter method). Geneva, Switzerland.
International Organization for Standardization. (2015b). EN ISO 5660-2: Reaction-to-fire tests — Heat release, smoke production and mass loss rate — Part 2: Smoke production rate (dynamic measurement). Geneva, Switzerland.
-
Kelly M. W. (1977). Critical literature review of relationships between processing parameters and physical properties of particleboard (General Technical Report FPL-10). U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. https://www.fpl.fs.usda.gov/documnts/fplgtr/fplgtr10.pdf
-
Kozłowski, R., Mieleniak, B., Helwig, M., & Przepiera, A. (1999). Flame-resistant lignocellulosic–mineral composite particleboards. Polymer Degradation and Stability, 64(3), 523–528. https://doi.org/10.1016/S0141-3910(98)00145-1
-
Li X., Lei B., Lin Z., Huang L., Tan S. & Cai X. (2013a). The utilization of organic vermiculite to reinforce wood–plastic composites with higher flexural and tensile properties. Industrial Crops and Products, 51, 310–316. https://doi.org/10.1016/j.indcrop.2013.09.004
-
Li X., Cai Z., Winandy J. E. & Basta A. H. (2013b). Moisture-related dimensional changes in wood and wood composites. BioResources, 3(4), 1244–1255. https://doi.org/10.15376/biores.3.4.1244-1255
-
Li X., Wu Y. Liu Q. and Li Y. (2020). Flammability and thermal degradation of wood-plastic composites reinforced with vermiculite. Journal of Applied Polymer Science, 137(15), 48567. https://doi.org/10.1002/app.48567
-
Maloney T. M. (1993). Modern particleboard and dry-process fiberboard manufacturing. Miller Freeman. (This source is a printed book and does not have a DOI number because the publisher has not assigned a digital DOI).
-
Miotto J. L., Soratto D. N. & Mascarenhas A. R. P. (2021). Physical and mechanical properties of particleboard produced with vermiculite and Pinus elliottii wood. BioResources, 16(2), 3369–3380. https://doi.org/10.15376/biores.16.2.3369-3380.
-
Rowell R. M. (Ed.). (2005). Handbook of wood chemistry and wood composites. CRC Press.
-
Savastano Jr. H., Warden P. G. & Coutts R. S. P. (2003). Potential of Brazilian vegetable fibres in cement-bonded panels. Industrial Crops and Products, 18(2), 107–115. https://doi.org/10.1016/S0926-6690(03)00034-2
-
Savastano H., Warden P. G., & Coutts R. S. P. (2003). Assessment of alternative fibres for wood–cement composites. Cement and Concrete Composites, 25(1), 27–35. https://doi.org/10.1016/S0958-9465(01)00066-4
-
Suchsland, O., & Woodson, G. E. (1987). Fiberboard manufacturing practices in the United States (Agriculture Handbook No. 640). U.S. Department of Agriculture, Forest Service. https://doi.org/10.5962/bhl.title.121752
-
Sun J. et al. (2007). Flame retardant performance of wood-based panels evaluated by cone calorimetry. (Reference for Sun et al. 2007 citation in text).
-
Tudor H. E. M., Barbu M. C., Petutschnigg A. & Reh R. (2018). Fire resistance of wood-based panels: The effect of expanded vermiculite. Pro Ligno, 14(4), 25–30. http://www.proligno.ro/en/articles/2018/4/Tudor_Final.pdf
-
Turkish Standards Institution. (1999a). TS EN 120: Wood-based panels — Determination of formaldehyde content — Extraction method (Perforator method). Ankara, Turkey.
-
Turkish Standards Institution. (1999b). TS EN 310: Wood-based panels — Determination of modulus of elasticity in bending and of bending strength. Ankara, Turkey.
-
Turkish Standards Institution. (1999c). TS EN 317: Particleboards and fibreboards — Determination of swelling in thickness after immersion in water. Ankara, Turkey.
-
Turkish Standards Institution. (2011). TS EN 311: Wood-based panels — Surface soundness — Test method. Ankara, Turkey.
-
Wang Q., Li J., Winandy J. E. & Yong Z. (2016). Thermal stability and fire performance of vermiculite-modified MDF: A TG, DSC, and LOI study. Construction and Building Materials, 115, 586–594. https://doi.org/10.1016/j.conbuildmat.2016.04.034
-
White, R. H. & Sumathipala, K. (2013). Cone calorimeter tests of wood composites. U.S. Forest Service Forest Products Laboratory.
-
Wong E. D., Zhang M., Wang Q. & Kawai S. (1999). Formation of the density profile and its effects on the properties of fiberboard. Journal of Wood Science, 45(4), 327–333. https://doi.org/10.1007/BF00833502
-
Xue B., Wen J., Zhang R. & Li X. (2019). Mechanical properties and flame retardancy of wood fiber/expanded vermiculite/gypsum composite. Construction and Building Materials, 223, 858–867. https://doi.org/10.1016/j.conbuildmat.2019.06.222
-
Yeh S. K. & Gupta R. K. (2013). The utilization of wood flour for wood–plastic composites: Part I. Thermal and mechanical properties. Journal of Composite Materials, 47(2), 173–182.
-
Zhang Y., Xu M. & Zhang Y. (2016). Effects of expanded vermiculite on the properties of wood-flour/polypropylene composites. Construction and Building Materials, 102, 856–863. https://doi.org/10.1016/j.conbuildmat.2015.11.028
-
Zhu Y. & Liang W. (2025). Effect of temperature and heat transfer on formaldehyde emissions from the medium-density fiberboard: An experimental investigation. Building and Environment, 283, 113431.