SOME PHYSICAL AND BIOLOGICAL PROPERTIES OF PINUS SYLVESTRIS WOOD IMPREGNATED WITH NANO-SOLUTIONS
Yıl 2023,
Cilt: 5 Sayı: 2, 10 - 17, 29.12.2023
Ayşenur Gürgen
,
Sibel Yıldız
Öz
In this study, Scots pine (Pinus sylvestris) wood samples were impregnated with nano-sized MgO, ZnO, TiO2 and SiO2 to determine the effects of nano particles on the some psychical and biological properties of pine wood. Moisture absorption rate and fungal decay test were performed after full- cell impregnation process. The results have demonstrated that all four nanoparticles used in the experiment (MgO, ZnO, TiO2, SiO2) can be used as impregnation materials in compliance with European standards. Particularly, SiO2 has exhibited high performance in increasing the antifungal properties of pine wood.
Kaynakça
-
Afrouzi Y.M., Omidvar A. and Marzbani P. (2013). Effect of artificial weathering on the wood impregnated with nano-zinc oxide. World Applied Sciences Journal, 22(9), 1200-1203.
-
Akhtari M. and Arefkhani M. (2013). Study of microscopy properties of wood impregnated with nanoparticles during exposed to white-rot fungus. Agriculture Science Developments, 2(11), 116-119.
-
Akhtari M., Ghorbani-Kokandeh M. and Taghiyari H. (2012). Mechanical properties of Paulownia fortunei wood impregnated with silver, copper and zinc oxide nanoparticles. Journal of Tropical Forest Science, 507-511.
-
Bayda S., Adeel M., Tuccinardi T., Cordani M. and Rizzolio F. (2019). The history of nanoscience and nanotechnology: from chemical–physical applications to nanomedicine. Molecules, 25(1), 112.
-
Chauhan V.S. and Chakrabarti S.K. (2012). Use of nanotechnology for high performance cellulosic and papermaking products. Cellulose Chemistry Technology, 46(5), 389.
-
Chernenko V. (2017). Technology of wood impregnation by polymeric compositions. Construction of Unique Buildings Structures, 7(58), 32-52.
-
Clausen C.A., Green F. and Nami Kartal S. (2010). Weatherability and leach resistance of wood impregnated with nano-zinc oxide. Nanoscale Research Letters, 5, 1464-1467.
-
EN 113 (1996). Determination of the toxic values of wood preservatives against wood destroying Basidiomycetes cultured on agar medium. Beuth, Berlin
-
Habibzade S., Taghiyari H.R., Omidvar A. and Roudi H.R. (2016). Effects of impregnation with styrene and nano-zinc oxide on fire-retarding, physical, and mechanical properties of poplar wood. Cerne, 22, 465-474.
-
Jasmani L., Rusli R., Khadiran T., Jalil R. and Adnan S. (2020). Application of nanotechnology in wood-based products industry: A review. Nanoscale Research Letters, 15, 1-31.
-
Kızılırmak S. and Aydemir D. (2019). Some properties of heat–treated wood materials impregnated with various nano particles. Journal of Bartin Faculty of Forestry, 21(3), 722-730.
-
Kjellow A.W. and Henriksen O. (2009). Supercritical wood impregnation. The Journal of Supercritical Fluids, 50(3), 297-304.
-
Kurkowiak K., Emmerich L. and Militz H. (2022). Wood chemical modification based on bio-based polycarboxylic acid and polyols–status quo and future perspectives. Wood Material Science Engineering, 17(6), 1040-1054.
-
Muhcu D. (2015). Nano Particles in Wood Conservation and Consolidation. M.Sc.Thesis , İstanbul University, İstanbul.
-
Papadopoulos A.N. and Taghiyari H.R. (2019). Innovative wood surface treatments based on nanotechnology. Coatings, 9(12), 866.
-
Pizzi A. (2016). Wood products and green chemistry. Annals of Forest Science, 73(1), 185-203.
-
Ramirez-Coretti A., Eckelman C. and Wolfe R. (1998). Inorganic-bonded composite wood panel systems for low-cost housing: a Central American perspective. Forest Products Journal, 48(4), 63.
-
Schultz E., Joutti A., Räisänen M.-L., Lintinen P., Martikainen E. and Lehto O. (2004). Extractability of metals and ecotoxicity of soils from two old wood impregnation sites in Finland. Science of the Total Environment, 326(1-3), 71-84.
-
Stephanopoulos G. and Reklaitis G.V. (2011). Process systems engineering: From Solvay to modern bio-and nanotechnology.: A history of development, successes and prospects for the future. Chemical engineering science, 66(19), 4272-4306.
-
Taghiyari H.R. (2011). Study on the effect of nano-silver impregnation on mechanical properties of heat-treated Populus nigra. Wood Science Technology, 45(2), 399-404.
-
Tomak E. and Gonultas O. (2018). The wood preservative potentials of valonia, chestnut, tara and sulphited oak tannins. Journal of Wood Chemistry Technology, 38(3), 183-197.
-
Tomak E.D., Viitanen H., Yildiz U.C. and Hughes M. (2011). The combined effects of boron and oil heat treatment on the properties of beech and Scots pine wood. Part 2: Water absorption, compression strength, color changes, and decay resistance. Journal of Materials Science, 46, 608-615.
-
TS 345 (2012). Testing methods for the effects of wood imregnating substances, Ankara, Turkey.
White R.J., Luque R., Budarin V.L., Clark J.H. and Macquarrie D.J. (2009). Supported metal nanoparticles on porous materials. Methods and applications. Chemical Society Reviews, 38(2), 481-494.
-
Zelinka S.L., Altgen M., Emmerich L., Guigo N., Keplinger T., Kymäläinen M., Thybring E.E. and Thygesen L.G. (2022). Review of wood modification and wood functionalization technologies. Forests, 13(7), 1004.
Nano-Çözeltilerle Emprenye Edilmiş Pinus sylvestris Odununun Bazı Fiziksel ve Biyolojik Özellikleri
Yıl 2023,
Cilt: 5 Sayı: 2, 10 - 17, 29.12.2023
Ayşenur Gürgen
,
Sibel Yıldız
Öz
Bu çalışmada, İskoç çamı (Pinus sylvestris) odun örnekleri nano boyutlu MgO, ZnO, TiO2 ve SiO2 ile emprenye edilmiş ve nano partiküllerin odunun bazı fiziksel ve biyolojik özellikleri üzerindeki etkileri belirlenmiştir. Dolu hücre emprenye işleminden sonra su alma oranı ve mantar çürüklük testi gerçekleştirilmiştir. Sonuçlar, deneyde kullanılan dört nano partikülün (MgO, ZnO, TiO2, SiO2) Avrupa standartlarına uygun olarak emprenye malzemeleri olarak kullanılabileceğini göstermiştir. Özellikle, SiO2, çam ahşabının antifungal özelliklerini artırmada yüksek performans sergilemiştir.
Kaynakça
-
Afrouzi Y.M., Omidvar A. and Marzbani P. (2013). Effect of artificial weathering on the wood impregnated with nano-zinc oxide. World Applied Sciences Journal, 22(9), 1200-1203.
-
Akhtari M. and Arefkhani M. (2013). Study of microscopy properties of wood impregnated with nanoparticles during exposed to white-rot fungus. Agriculture Science Developments, 2(11), 116-119.
-
Akhtari M., Ghorbani-Kokandeh M. and Taghiyari H. (2012). Mechanical properties of Paulownia fortunei wood impregnated with silver, copper and zinc oxide nanoparticles. Journal of Tropical Forest Science, 507-511.
-
Bayda S., Adeel M., Tuccinardi T., Cordani M. and Rizzolio F. (2019). The history of nanoscience and nanotechnology: from chemical–physical applications to nanomedicine. Molecules, 25(1), 112.
-
Chauhan V.S. and Chakrabarti S.K. (2012). Use of nanotechnology for high performance cellulosic and papermaking products. Cellulose Chemistry Technology, 46(5), 389.
-
Chernenko V. (2017). Technology of wood impregnation by polymeric compositions. Construction of Unique Buildings Structures, 7(58), 32-52.
-
Clausen C.A., Green F. and Nami Kartal S. (2010). Weatherability and leach resistance of wood impregnated with nano-zinc oxide. Nanoscale Research Letters, 5, 1464-1467.
-
EN 113 (1996). Determination of the toxic values of wood preservatives against wood destroying Basidiomycetes cultured on agar medium. Beuth, Berlin
-
Habibzade S., Taghiyari H.R., Omidvar A. and Roudi H.R. (2016). Effects of impregnation with styrene and nano-zinc oxide on fire-retarding, physical, and mechanical properties of poplar wood. Cerne, 22, 465-474.
-
Jasmani L., Rusli R., Khadiran T., Jalil R. and Adnan S. (2020). Application of nanotechnology in wood-based products industry: A review. Nanoscale Research Letters, 15, 1-31.
-
Kızılırmak S. and Aydemir D. (2019). Some properties of heat–treated wood materials impregnated with various nano particles. Journal of Bartin Faculty of Forestry, 21(3), 722-730.
-
Kjellow A.W. and Henriksen O. (2009). Supercritical wood impregnation. The Journal of Supercritical Fluids, 50(3), 297-304.
-
Kurkowiak K., Emmerich L. and Militz H. (2022). Wood chemical modification based on bio-based polycarboxylic acid and polyols–status quo and future perspectives. Wood Material Science Engineering, 17(6), 1040-1054.
-
Muhcu D. (2015). Nano Particles in Wood Conservation and Consolidation. M.Sc.Thesis , İstanbul University, İstanbul.
-
Papadopoulos A.N. and Taghiyari H.R. (2019). Innovative wood surface treatments based on nanotechnology. Coatings, 9(12), 866.
-
Pizzi A. (2016). Wood products and green chemistry. Annals of Forest Science, 73(1), 185-203.
-
Ramirez-Coretti A., Eckelman C. and Wolfe R. (1998). Inorganic-bonded composite wood panel systems for low-cost housing: a Central American perspective. Forest Products Journal, 48(4), 63.
-
Schultz E., Joutti A., Räisänen M.-L., Lintinen P., Martikainen E. and Lehto O. (2004). Extractability of metals and ecotoxicity of soils from two old wood impregnation sites in Finland. Science of the Total Environment, 326(1-3), 71-84.
-
Stephanopoulos G. and Reklaitis G.V. (2011). Process systems engineering: From Solvay to modern bio-and nanotechnology.: A history of development, successes and prospects for the future. Chemical engineering science, 66(19), 4272-4306.
-
Taghiyari H.R. (2011). Study on the effect of nano-silver impregnation on mechanical properties of heat-treated Populus nigra. Wood Science Technology, 45(2), 399-404.
-
Tomak E. and Gonultas O. (2018). The wood preservative potentials of valonia, chestnut, tara and sulphited oak tannins. Journal of Wood Chemistry Technology, 38(3), 183-197.
-
Tomak E.D., Viitanen H., Yildiz U.C. and Hughes M. (2011). The combined effects of boron and oil heat treatment on the properties of beech and Scots pine wood. Part 2: Water absorption, compression strength, color changes, and decay resistance. Journal of Materials Science, 46, 608-615.
-
TS 345 (2012). Testing methods for the effects of wood imregnating substances, Ankara, Turkey.
White R.J., Luque R., Budarin V.L., Clark J.H. and Macquarrie D.J. (2009). Supported metal nanoparticles on porous materials. Methods and applications. Chemical Society Reviews, 38(2), 481-494.
-
Zelinka S.L., Altgen M., Emmerich L., Guigo N., Keplinger T., Kymäläinen M., Thybring E.E. and Thygesen L.G. (2022). Review of wood modification and wood functionalization technologies. Forests, 13(7), 1004.