Derleme
BibTex RIS Kaynak Göster

Buğdayda Su Kullanım Verimliliği Üzerine Gen İfadesi Çalışmaları

Yıl 2025, Cilt: 14 Sayı: 1, 22 - 34, 03.09.2025

Öz

Kuraklık stresi, verimi önemli ölçüde sınırlayarak dünya çapında buğday üretimi için kritik bir zorluk oluşturmaktadır. Poligenik kalıtım, düşük kalıtım derecesi ve güçlü çevresel etkileşimlerle karakterize edilen kuraklık toleransının genetik karmaşıklığı, geleneksel ıslah yoluyla ilerlemeyi engellemiştir. Sonuç olarak, su kullanım verimliliğini artırmaya odaklanan moleküler ıslah yaklaşımları ön plana çıkmıştır. Kuraklık koşullarında üstün su kullanım verimliliğine sahip genotiplerin seçilmesi bu çabaların merkezinde yer almaktadır. Gen ifadesi analizleri, su kullanımının genetik düzenlenmesi ve kuraklık toleransı mekanizmaları hakkında kritik bilgiler sağlamıştır. Transkriptomik, proteomik ve metabolomik veri setlerini entegre eden çoklu omik yaklaşımı, bitkinin stres tepkisine dair daha bütünsel bir anlayış sunmaktadır. Bu derleme, buğdayda su kullanım verimliliği üzerine gen ifadesi çalışmalarındaki son gelişmeleri özetleyerek, fizyolojik düzenleme, stres adaptasyonu, karbonhidrat metabolizması, yeşil kalma, gövde rezervi mobilizasyonu, kök mimarisi ve besin-su etkileşimleriyle ilgili temel genleri, düzenleyici ağları ve özellikleri vurgulamaktadır. Derleme, kritik transkripsiyonel yolları hedefleyen moleküler ve fizyolojik ıslah stratejilerini entegre ederek; su kullanım verimliliğini, besin alımını ve çoklu stres toleransı sağlama yollarını özetlemektedir. Belirlenen moleküler hedefler, su kısıtlı koşullar altında istikrarlı verim sağlayan, iklime dayanıklı buğday çeşitlerinin geliştirilmesi için bir temel oluşturmaktadır.

Kaynakça

  • Afzal, Z., Howton, T. C., Sun, Y., & Mukhtar, M. S. (2016). The roles of aquaporins in plant stress responses. Journal of developmental biology, 4(1), 9.
  • Alsamadany, H., Alzahrani, Y., & Shah, Z. H. (2023). Physiomorphic and molecular-based evaluation of wheat germplasm under drought and heat stress. Frontiers in Plant Science, 14, 1107945.
  • Al-Huqail, A. A., Saleem, M. H., Ali, B., Azeem, M., Mumtaz, S., Yasin, G., ... & Ali, S. (2023). Efficacy of priming wheat (Triticum aestivum) seeds with a benzothiazine derivative to improve drought stress tolerance. Functional Plant Biology, 50(11), 915-931.
  • Ashraf, A., Rehman, O. U., Muzammil, S., Léon, J., Naz, A. A., Rasool, F., ... & Khan, M. R. (2019). Evolution of Deeper Rooting 1-like homoeologs in wheat entails the C-terminus mutations as well as gain and loss of auxin response elements. PLoS One, 14(4), e0214145.
  • Ayadi, M., Cavez, D., Miled, N., Chaumont, F., & Masmoudi, K. (2011). Identification and characterization of two plasma membrane aquaporins in durum wheat (Triticum turgidum L. subsp. durum) and their role in abiotic stress tolerance. Plant Physiology and Biochemistry, 49(9), 1029-1039.
  • Bapela, T., Shimelis, H., Tsilo, T. J., & Mathew, I. (2022). Genetic improvement of wheat for drought tolerance: Progress, challenges and opportunities. Plants, 11(10), 1331.
  • Blum, A. (2009). Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field crops research, 112(2-3), 119-123.
  • Caine RS, Yin X, Sloan J, et al. (2019). Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytologist 221, 371–384.
  • Chen, D., Richardson, T., Chai, S., Lynne McIntyre, C., Rae, A. L., & Xue, G. P. (2016). Drought-up-regulated TaNAC69-1 is a transcriptional repressor of TaSHY2 and TaIAA7, and enhances root length and biomass in wheat. Plant and Cell Physiology, 57(10), 2076-2090.
  • Chien, P. S., Chao, Y. T., Chou, C. H., Hsu, Y. Y., Chiang, S. F., Tung, C. W., & Chiou, T. J. (2022). Phosphate transporter PHT1; 1 is a key determinant of phosphorus acquisition in Arabidopsis natural accessions. Plant Physiology, 190(1), 682-697.
  • Cimini, S., Locato, V., Vergauwen, R., Paradiso, A., Cecchini, C., Vandenpoel, L., ... & De Gara, L. (2015). Fructan biosynthesis and degradation as part of plant metabolism controlling sugar fluxes during durum wheat kernel maturation. Frontiers in Plant Science, 6, 89.
  • Colebrook, E. H., Thomas, S. G., Phillips, A. L., & Hedden, P. (2014). The role of gibberellin signalling in plant responses to abiotic stress. Journal of experimental biology, 217(1), 67-75.
  • Condon, A. G., Richards, R. A., Rebetzke, G. J., & Farquhar, G. D. (2004). Breeding for high water-use efficiency. Journal of experimental botany, 55(407), 2447-2460.
  • Cui, XY., Du, YT., Fu, Jd. et al. (2018). Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses. BMC Plant Biol 18, 93.
  • Dunn, J., Hunt, L., Afsharinafar, M., Meselmani, M. A., Mitchell, A., Howells, R., ... & Gray, J. E. (2019). Reduced stomatal density in bread wheat leads to increased water-use efficiency. Journal of Experimental Botany, 70(18), 4737-4748.
  • Farquhar, G. D., & Richards, R. A. (1984). Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Functional Plant Biology, 11(6), 539-552.
  • Flexas, J., & Medrano, H. (2002). Drought‐inhibition of photosynthesis in C3 plants: stomatal and non‐stomatal limitations revisited. Annals of botany, 89(2), 183-189.
  • Forrest, K. L., & Bhave, M. (2010). Physical mapping of wheat aquaporin genes. Theoretical and applied genetics, 120(4), 863-873.
  • Franks, P. J., W. Doheny‐Adams, T., Britton‐Harper, Z. J., & Gray, J. E. (2015). Increasing water‐use efficiency directly through genetic manipulation of stomatal density. New Phytologist, 207(1), 188-195.
  • Furutani, M., Hirano, Y., Nishimura, T., Nakamura, M., Taniguchi, M., Suzuki, K., ... & Morita, M. T. (2020). Polar recruitment of RLD by LAZY1-like protein during gravity signaling in root branch angle control. Nature communications, 11(1), 76.
  • Gabay, G., Wang, H., Zhang, J., Moriconi, J. I., Burguener, G. F., Gualano, L. D., ... & Dubcovsky, J. (2023). Dosage differences in 12-OXOPHYTODIENOATE REDUCTASE genes modulate wheat root growth. Nature communications, 14(1), 539.
  • Gurumurthy, S., Arora, A., Krishna, H., Chinnusamy, V., & Hazra, K. K. (2023). Genotypic capacity of post-anthesis stem reserve mobilization in wheat for yield sustainability under drought and heat stress in the subtropical region. Frontiers in Genetics, 14, 1180941.
  • Hafeez, A., Ali, S., Javed, M. A., Iqbal, R., Khan, M. N., Çiğ, F., ... & Ali, B. (2024). Breeding for water-use efficiency in wheat: progress, challenges and prospects. Molecular Biology Reports, 51(1), 429.
  • Haider, F. U., Ain, N. U., Siddique, K. H., Farooq, M., & Li, Y. (2025). Enhancing bread wheat resilience to cadmium and drought stress: insights from physiological, morphological, and transcriptomic responses to biochar and 24-epibrassinolide application. Biochar, 7(1), 59.
  • Hamada, A., Nitta, M., Nasuda, S., Kato, K., Fujita, M., Matsunaka, H., & Okumoto, Y. (2012). Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.). Plant and Soil, 354(1), 395-405.
  • Hepworth, C., Caine, R. S., Harrison, E. L., Sloan, J., & Gray, J. E. (2018). Stomatal development: focusing on the grasses. Current opinion in plant biology, 41, 1-7.
  • Hickey, K., Wood, M., Sexton, T., Sahin, Y., Nazarov, T., Fisher, J., ... & Smertenko, A. (2022). Drought tolerance strategies and autophagy in resilient wheat genotypes. Cells, 11(11), 1765.
  • Hollender, C. A., Hill Jr, J. L., Waite, J., & Dardick, C. (2020). Opposing influences of TAC1 and LAZY1 on lateral shoot orientation in Arabidopsis. Scientific Reports, 10(1), 6051.
  • Hossain, M. A., Kumar, V., Burritt, D. J., Fujita, M., & Mäkelä, P. (2019). Osmoprotectant-mediated abiotic stress tolerance in plants. Proline Metabolism and Its Functions in Development and Stress Tolerance; Springer Nature: Cham, Switzerland, 41-72.
  • Hu, L., Xie, Y., Fan, S., Wang, Z., Wang, F., Zhang, B., ... & Kong, L. (2018). Comparative analysis of root transcriptome profiles between drought-tolerant and susceptible wheat genotypes in response to water stress. Plant Science, 272, 276-293.
  • Imaduwage, I. U. H., & Hewadikaram, M. (2024). Predicted roles of long non-coding RNAs in abiotic stress tolerance responses of plants. Molecular Horticulture, 4(1), 20.
  • Jain, A., Sinilal, B., Dhandapani, G., Meagher, R. B., & Sahi, S. V. (2013). Effects of deficiency and excess of zinc on morphophysiological traits and spatiotemporal regulation of zinc-responsive genes reveal incidence of cross talk between micro-and macronutrients. Environmental science & technology, 47(10), 5327-5335.
  • Jain, M., Kataria, S., Hirve, M., & Prajapati, R. (2019). Water deficit stress effects and responses in maize. Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches, 129-151.
  • Joudi, M., Ahmadi, A., Mohamadi, V., Abbasi, A., Vergauwen, R., Mohammadi, H., & Van den Ende, W. (2012). Comparison of fructan dynamics in two wheat cultivars with different capacities of accumulation and remobilization under drought stress. Physiologia Plantarum, 144(1), 1-12.
  • Kellermeier, F., Armengaud, P., Seditas, T. J., Danku, J., Salt, D. E., & Amtmann, A. (2014). Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals. The plant cell, 26(4), 1480-1496.
  • Khadka, K., Earl, H. J., Raizada, M. N., & Navabi, A. (2020). A physio-morphological trait-based approach for breeding drought tolerant wheat. Frontiers in plant science, 11, 715.
  • Khoshro, H. H., Taleei, A., Bihamta, M. R., Shahbazi, M., Abbasi, A., & Ramezanpour, S. S. (2014). Expression analysis of the genes involved in accumulation and remobilization of assimilates in wheat stem under terminal drought stress. Plant Growth Regulation, 74, 165-176.
  • Kumar, R., Lal, M. K., Tiwari, R. K., Chourasia, K. N., Kumar, A., Kumar, R., ... & Singh, B. (2023). Investigating the interplay between tomato leaf curl New Delhi virus infection, starch metabolism and antioxidant defence system in potato (Solanum tuberosum L.). Antioxidants, 12(7), 1447.
  • Krishnappa, G., Khan, H., Krishna, H., Kumar, S., Mishra, C. N., Parkash, O., ... & Singh, G. P. (2022). Genetic dissection of grain iron and zinc, and thousand kernel weight in wheat (Triticum aestivum L.) using genome-wide association study. Scientific Reports, 12(1), 12444.
  • Laddomada, B., Blanco, A., Mita, G., D’Amico, L., Singh, R. P., Ammar, K., ... & Guzmán, C. (2021). Drought and heat stress impacts on phenolic acids accumulation in durum wheat cultivars. Foods, 10(9), 2142.
  • Li, Z., Liu, D., Xia, Y., Li, Z., Niu, N., Ma, S., ... & Zhang, G. (2019). Identification and functional analysis of the CLAVATA3/EMBRYO SURROUNDING REGION (CLE) gene family in wheat. International Journal of Molecular Sciences, 20(17), 4319.
  • Li, P., Luo, T., Pu, X., Zhou, Y., Yu, J., & Liu, L. (2021). Plant transporters: roles in stress responses and effects on growth and development. Plant Growth Regulation, 93, 253-266.
  • Li, X., Ding, M., Wang, M., Yang, S., Ma, X., Hu, J., ... & Liang, W. (2022). Proteome profiling reveals changes in energy metabolism, transport and antioxidation during drought stress in Nostoc flagelliforme. BMC Plant Biology, 22(1), 162.
  • Liu, D. (Ed.). (2024). Handbook of Molecular Biotechnology. CRC Press.
  • Lv, X., Ding, Y., Long, M., Liang, W., Gu, X., Liu, Y., & Wen, X. (2021). Effect of foliar application of various nitrogen forms on starch accumulation and grain filling of wheat (Triticum aestivum L.) under drought stress. Frontiers in plant science, 12, 645379.
  • Madrid-Espinoza, J., Brunel-Saldias, N., Guerra, F. P., Gutiérrez, A., & Del Pozo, A. (2018). Genome-wide identification and transcriptional regulation of aquaporin genes in bread wheat (Triticum aestivum L.) under water stress. Genes, 9(10), 497.
  • Malakondaiah, A. C., Arora, A., Krishna, H., Taria, S., Kumar, S., Devate, N. B., ... & Singh, P. K. (2025). Genome-wide association mapping for stay-green and stem reserve mobilization traits in wheat (Triticum aestivum L.) under combined heat and drought stress. Protoplasma, 1-20.
  • Mao, H., Jian, C., Cheng, X., Chen, B., Mei, F., Li, F., ... & Kang, Z. (2022). The wheat ABA receptor gene TaPYL1‐1B contributes to drought tolerance and grain yield by increasing water‐use efficiency. Plant Biotechnology Journal, 20(5), 846-861.
  • Maqbool, S., Naseer, S., Zahra, N., Rasool, F., Qayyum, H., Majeed, K., ... & Li, H. (2023). RNAseq of diverse spring wheat cultivars released during last 110 years. Scientific Data, 10(1), 884.
  • Milner, M. J., Howells, R. M., Craze, M., Bowden, S., Graham, N., & Wallington, E. J. (2018). A PSTOL-like gene, TaPSTOL, controls a number of agronomically important traits in wheat. BMC plant biology, 18, 1-14.
  • Oono, Y., Kawahara, Y., Kanamori, H., Mizuno, H., Yamagata, H., Yamamoto, M., ... & Matsumoto, T. (2011). mRNA-Seq reveals a comprehensive transcriptome profile of rice under phosphate stress. Rice, 4, 50-65.
  • Pandey, B., Sharma, P., Pandey, D. M., Sharma, I., & Chatrath, R. (2013). Identification of new aquaporin genes and single nucleotide polymorphism in bread wheat. Evolutionary Bioinformatics, 9, EBO-S12568.
  • Passioura, J. B. (1982). Water in the soil-plant-atmosphere continuum. In Physiological plant ecology II: Water relations and carbon assimilation (pp. 5-33). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Placido, D. F., Sandhu, J., Sato, S. J., Nersesian, N., Quach, T., Clemente, T. E., ... & Walia, H. (2020). The LATERAL ROOT DENSITY gene regulates root growth during water stress in wheat. Plant Biotechnology Journal, 18(9), 1955-1968.
  • Ptošková, K., Szecówka, M., Jaworek, P., Tarkowská, D., Petřík, I., Pavlović, I., ... & Hedden, P. (2022). Changes in the concentrations and transcripts for gibberellins and other hormones in a growing leaf and roots of wheat seedlings in response to water restriction. BMC plant biology, 22(1), 284.
  • Rasool, F., Khan, M. R., Schneider, M., Uzair, M., Aqeel, M., Ajmal, W., ... & Naz, A. A. (2022). Transcriptome unveiled the gene expression patterns of root architecture in drought-tolerant and sensitive wheat genotypes. Plant Physiology and Biochemistry, 178, 20-30.
  • Roychoudhry, S., & Kepinski, S. (2022). Auxin in root development. Cold Spring Harbor Perspectives in Biology, 14(4), a039933.
  • Shanker, A. K., Sathee, L., Jain, V., & Raghuram, N. (2024). Plant nutrient use efficiency in the era of climate change. Frontiers in Plant Science, 15, 1402868.
  • Shi, L., Shi, T., Broadley, M. R., White, P. J., Long, Y., Meng, J., ... & Hammond, J. P. (2013). High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities. Annals of Botany, 112(2), 381-389.
  • Sun, R., Gong, J., Liu, Y., Chen, Z., Zhang, F., Gao, J., ... & Gao, S. (2022). Comprehensive molecular evaluation of the histone methyltransferase gene family and their important roles in two-line hybrid wheat. BMC Plant Biology, 22(1), 290.
  • Suneja, Y., Gupta, A. K., Sharma, A., & Bains, N. S. (2015). Differential response of wild and cultivated wheats to water deficits during grain development: changes in soluble carbohydrates and invertases. Physiology and Molecular Biology of Plants, 21, 169-177.
  • Taria, S., Arora, A., Krishna, H., Manjunath, K. K., Kumar, S., Singh, B., ... & Arunachalam, A. (2025). Mapping of the QTLs governing stem-specific weight for stem reserve mobilisation in wheat (Triticum aestivum L.) under combined heat and drought stress. Plant Physiology Reports, 1-15.
  • Thapa, S., Rudd, J. C., Jessup, K. E., Liu, S., Baker, J. A., Devkota, R. N., & Xue, Q. (2022). Middle portion of the wheat culm remobilizes more carbon reserve to grains under drought. Journal of Agronomy and Crop Science, 208(6), 795-804.
  • Qin, T., & Xiong, L. (2019). Subcellular localization and functions of plant lncRNAs in drought and salt stress tolerance. Plant Long Non-Coding RNAs: Methods and Protocols, 173-186.
  • Quan, M., Liu, X., Xiao, L., Chen, P., Song, F., Lu, W., ... & Zhang, D. (2021). Transcriptome analysis and association mapping reveal the genetic regulatory network response to cadmium stress in Populus tomentosa. Journal of experimental botany, 72(2), 576-591.
  • Wang, F., He, Z., Sayre, K., Li, S., Si, J., Feng, B., & Kong, L. (2009). Wheat cropping systems and technologies in China. Field crops research, 111(3), 181-188.
  • Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature reviews genetics, 10(1), 57-63.
  • Xue, G. P., McIntyre, C. L., Jenkins, C. L., Glassop, D., van Herwaarden, A. F., & Shorter, R. (2008). Molecular dissection of variation in carbohydrate metabolism related to water-soluble carbohydrate accumulation in stems of wheat. Plant physiology, 146(2), 441.
  • Yáñez, A., Tapia, G., Guerra, F., & Del Pozo, A. (2017). Stem carbohydrate dynamics and expression of genes involved in fructan accumulation and remobilization during grain growth in wheat (Triticum aestivum L.) genotypes with contrasting tolerance to water stress. PLoS One, 12(5), e0177667.
  • Yang, J., Zhang, G., An, J., Li, Q., Chen, Y., Zhao, X., ... & Wang, W. (2020). Expansin gene TaEXPA2 positively regulates drought tolerance in transgenic wheat (Triticum aestivum L.). Plant science, 298, 110596.
  • Yang, W., Feng, M., Yu, K., Cao, J., Cui, G., Zhang, Y., ... & Xin, M. (2025). The TaCLE24b peptide signaling cascade modulates lateral root development and drought tolerance in wheat. Nature communications, 16(1), 1952.
  • Yu, L., Zhao, X., Gao, X., & Siddique, K. H. (2020). Improving/maintaining water-use efficiency and yield of wheat by deficit irrigation: A global meta-analysis. Agricultural Water Management, 228, 105906.
  • Yue, W., Nie, X., Cui, L., Zhi, Y., Zhang, T., Du, X., & Song, W. (2018). Genome-wide sequence and expressional analysis of autophagy Gene family in bread wheat (Triticum aestivum L.). Journal of plant physiology, 229, 7-21.
  • Zhang, J., Xu, Y., Chen, W., Dell, B., Vergauwen, R., Biddulph, B., ... & Van den Ende, W. (2015). A wheat 1‐FEH w3 variant underlies enzyme activity for stem WSC remobilization to grain under drought. New Phytologist, 205(1), 293-305.
  • Zhang, X., Li, C., Lu, W., Wang, X., Ma, B., Fu, K., ... & Li, C. (2022). Comparative analysis of combined phosphorus and drought stress-responses in two winter wheat. PeerJ, 10, e13887.
  • Zhang, P., He, R., Yang, J., Cai, J., Qu, Z., Yang, R., ... & Wang, D. (2023). The long non-coding RNA DANA2 positively regulates drought tolerance by recruiting ERF84 to promote JMJ29-mediated histone demethylation. Molecular plant, 16(8), 1339-1353.
  • Zhang, Y., Li, Y., de Zeeuw, T., Duijts, K., Kawa, D., Lamers, J., ... & Testerink, C. (2024). Root branching under high salinity requires auxin-independent modulation of LATERAL ORGAN BOUNDARY DOMAIN 16 function. The Plant Cell, 36(4), 899-918.
  • Zhang, T., Zhang, Y., Ding, Y., Yang, Y., Zhao, D., Wang, H., ... & Zhang, H. (2025). Research on the regulation mechanism of drought tolerance in wheat. Plant Cell Reports, 44(4), 1-16.

Gene Expression Studies on Water Use Efficiency in Wheat

Yıl 2025, Cilt: 14 Sayı: 1, 22 - 34, 03.09.2025

Öz

Drought stress constitutes a critical challenge to wheat production worldwide by substantially limiting yield. The genetic complexity of drought tolerance which is characterized by its polygenic inheritance, low heritability, and strong environmental interactions, has hindered progress through conventional breeding. Consequently, molecular breeding approaches focused on improving water use efficiency have gained significance. Selecting genotypes with superior water use efficiency under drought conditions is central to these efforts. Gene expression analyses have provided critical insights into the genetic regulation of water use and drought tolerance mechanisms. A multi-omics approach that integrates transcriptomic, proteomic, and metabolomic datasets offers a more comprehensive understanding of the plant’s stress response. This review synthesizes recent advances in gene expression studies on water use efficiency in wheat, emphasizing key genes, regulatory networks, and traits related to physiological regulation, stress adaptation, carbohydrate metabolism, stay green, stem reserve mobilization, root architecture, and nutrient-water interactions. By integrating molecular and physiological breeding strategies targeting critical transcriptional pathways, the review outlines opportunities to improve water use efficiency, nutrient uptake, and multi-stress resilience. The identified molecular targets provide a foundation for developing climate resilient wheat cultivars with stable yields under water limited conditions.

Kaynakça

  • Afzal, Z., Howton, T. C., Sun, Y., & Mukhtar, M. S. (2016). The roles of aquaporins in plant stress responses. Journal of developmental biology, 4(1), 9.
  • Alsamadany, H., Alzahrani, Y., & Shah, Z. H. (2023). Physiomorphic and molecular-based evaluation of wheat germplasm under drought and heat stress. Frontiers in Plant Science, 14, 1107945.
  • Al-Huqail, A. A., Saleem, M. H., Ali, B., Azeem, M., Mumtaz, S., Yasin, G., ... & Ali, S. (2023). Efficacy of priming wheat (Triticum aestivum) seeds with a benzothiazine derivative to improve drought stress tolerance. Functional Plant Biology, 50(11), 915-931.
  • Ashraf, A., Rehman, O. U., Muzammil, S., Léon, J., Naz, A. A., Rasool, F., ... & Khan, M. R. (2019). Evolution of Deeper Rooting 1-like homoeologs in wheat entails the C-terminus mutations as well as gain and loss of auxin response elements. PLoS One, 14(4), e0214145.
  • Ayadi, M., Cavez, D., Miled, N., Chaumont, F., & Masmoudi, K. (2011). Identification and characterization of two plasma membrane aquaporins in durum wheat (Triticum turgidum L. subsp. durum) and their role in abiotic stress tolerance. Plant Physiology and Biochemistry, 49(9), 1029-1039.
  • Bapela, T., Shimelis, H., Tsilo, T. J., & Mathew, I. (2022). Genetic improvement of wheat for drought tolerance: Progress, challenges and opportunities. Plants, 11(10), 1331.
  • Blum, A. (2009). Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field crops research, 112(2-3), 119-123.
  • Caine RS, Yin X, Sloan J, et al. (2019). Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytologist 221, 371–384.
  • Chen, D., Richardson, T., Chai, S., Lynne McIntyre, C., Rae, A. L., & Xue, G. P. (2016). Drought-up-regulated TaNAC69-1 is a transcriptional repressor of TaSHY2 and TaIAA7, and enhances root length and biomass in wheat. Plant and Cell Physiology, 57(10), 2076-2090.
  • Chien, P. S., Chao, Y. T., Chou, C. H., Hsu, Y. Y., Chiang, S. F., Tung, C. W., & Chiou, T. J. (2022). Phosphate transporter PHT1; 1 is a key determinant of phosphorus acquisition in Arabidopsis natural accessions. Plant Physiology, 190(1), 682-697.
  • Cimini, S., Locato, V., Vergauwen, R., Paradiso, A., Cecchini, C., Vandenpoel, L., ... & De Gara, L. (2015). Fructan biosynthesis and degradation as part of plant metabolism controlling sugar fluxes during durum wheat kernel maturation. Frontiers in Plant Science, 6, 89.
  • Colebrook, E. H., Thomas, S. G., Phillips, A. L., & Hedden, P. (2014). The role of gibberellin signalling in plant responses to abiotic stress. Journal of experimental biology, 217(1), 67-75.
  • Condon, A. G., Richards, R. A., Rebetzke, G. J., & Farquhar, G. D. (2004). Breeding for high water-use efficiency. Journal of experimental botany, 55(407), 2447-2460.
  • Cui, XY., Du, YT., Fu, Jd. et al. (2018). Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses. BMC Plant Biol 18, 93.
  • Dunn, J., Hunt, L., Afsharinafar, M., Meselmani, M. A., Mitchell, A., Howells, R., ... & Gray, J. E. (2019). Reduced stomatal density in bread wheat leads to increased water-use efficiency. Journal of Experimental Botany, 70(18), 4737-4748.
  • Farquhar, G. D., & Richards, R. A. (1984). Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Functional Plant Biology, 11(6), 539-552.
  • Flexas, J., & Medrano, H. (2002). Drought‐inhibition of photosynthesis in C3 plants: stomatal and non‐stomatal limitations revisited. Annals of botany, 89(2), 183-189.
  • Forrest, K. L., & Bhave, M. (2010). Physical mapping of wheat aquaporin genes. Theoretical and applied genetics, 120(4), 863-873.
  • Franks, P. J., W. Doheny‐Adams, T., Britton‐Harper, Z. J., & Gray, J. E. (2015). Increasing water‐use efficiency directly through genetic manipulation of stomatal density. New Phytologist, 207(1), 188-195.
  • Furutani, M., Hirano, Y., Nishimura, T., Nakamura, M., Taniguchi, M., Suzuki, K., ... & Morita, M. T. (2020). Polar recruitment of RLD by LAZY1-like protein during gravity signaling in root branch angle control. Nature communications, 11(1), 76.
  • Gabay, G., Wang, H., Zhang, J., Moriconi, J. I., Burguener, G. F., Gualano, L. D., ... & Dubcovsky, J. (2023). Dosage differences in 12-OXOPHYTODIENOATE REDUCTASE genes modulate wheat root growth. Nature communications, 14(1), 539.
  • Gurumurthy, S., Arora, A., Krishna, H., Chinnusamy, V., & Hazra, K. K. (2023). Genotypic capacity of post-anthesis stem reserve mobilization in wheat for yield sustainability under drought and heat stress in the subtropical region. Frontiers in Genetics, 14, 1180941.
  • Hafeez, A., Ali, S., Javed, M. A., Iqbal, R., Khan, M. N., Çiğ, F., ... & Ali, B. (2024). Breeding for water-use efficiency in wheat: progress, challenges and prospects. Molecular Biology Reports, 51(1), 429.
  • Haider, F. U., Ain, N. U., Siddique, K. H., Farooq, M., & Li, Y. (2025). Enhancing bread wheat resilience to cadmium and drought stress: insights from physiological, morphological, and transcriptomic responses to biochar and 24-epibrassinolide application. Biochar, 7(1), 59.
  • Hamada, A., Nitta, M., Nasuda, S., Kato, K., Fujita, M., Matsunaka, H., & Okumoto, Y. (2012). Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.). Plant and Soil, 354(1), 395-405.
  • Hepworth, C., Caine, R. S., Harrison, E. L., Sloan, J., & Gray, J. E. (2018). Stomatal development: focusing on the grasses. Current opinion in plant biology, 41, 1-7.
  • Hickey, K., Wood, M., Sexton, T., Sahin, Y., Nazarov, T., Fisher, J., ... & Smertenko, A. (2022). Drought tolerance strategies and autophagy in resilient wheat genotypes. Cells, 11(11), 1765.
  • Hollender, C. A., Hill Jr, J. L., Waite, J., & Dardick, C. (2020). Opposing influences of TAC1 and LAZY1 on lateral shoot orientation in Arabidopsis. Scientific Reports, 10(1), 6051.
  • Hossain, M. A., Kumar, V., Burritt, D. J., Fujita, M., & Mäkelä, P. (2019). Osmoprotectant-mediated abiotic stress tolerance in plants. Proline Metabolism and Its Functions in Development and Stress Tolerance; Springer Nature: Cham, Switzerland, 41-72.
  • Hu, L., Xie, Y., Fan, S., Wang, Z., Wang, F., Zhang, B., ... & Kong, L. (2018). Comparative analysis of root transcriptome profiles between drought-tolerant and susceptible wheat genotypes in response to water stress. Plant Science, 272, 276-293.
  • Imaduwage, I. U. H., & Hewadikaram, M. (2024). Predicted roles of long non-coding RNAs in abiotic stress tolerance responses of plants. Molecular Horticulture, 4(1), 20.
  • Jain, A., Sinilal, B., Dhandapani, G., Meagher, R. B., & Sahi, S. V. (2013). Effects of deficiency and excess of zinc on morphophysiological traits and spatiotemporal regulation of zinc-responsive genes reveal incidence of cross talk between micro-and macronutrients. Environmental science & technology, 47(10), 5327-5335.
  • Jain, M., Kataria, S., Hirve, M., & Prajapati, R. (2019). Water deficit stress effects and responses in maize. Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches, 129-151.
  • Joudi, M., Ahmadi, A., Mohamadi, V., Abbasi, A., Vergauwen, R., Mohammadi, H., & Van den Ende, W. (2012). Comparison of fructan dynamics in two wheat cultivars with different capacities of accumulation and remobilization under drought stress. Physiologia Plantarum, 144(1), 1-12.
  • Kellermeier, F., Armengaud, P., Seditas, T. J., Danku, J., Salt, D. E., & Amtmann, A. (2014). Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals. The plant cell, 26(4), 1480-1496.
  • Khadka, K., Earl, H. J., Raizada, M. N., & Navabi, A. (2020). A physio-morphological trait-based approach for breeding drought tolerant wheat. Frontiers in plant science, 11, 715.
  • Khoshro, H. H., Taleei, A., Bihamta, M. R., Shahbazi, M., Abbasi, A., & Ramezanpour, S. S. (2014). Expression analysis of the genes involved in accumulation and remobilization of assimilates in wheat stem under terminal drought stress. Plant Growth Regulation, 74, 165-176.
  • Kumar, R., Lal, M. K., Tiwari, R. K., Chourasia, K. N., Kumar, A., Kumar, R., ... & Singh, B. (2023). Investigating the interplay between tomato leaf curl New Delhi virus infection, starch metabolism and antioxidant defence system in potato (Solanum tuberosum L.). Antioxidants, 12(7), 1447.
  • Krishnappa, G., Khan, H., Krishna, H., Kumar, S., Mishra, C. N., Parkash, O., ... & Singh, G. P. (2022). Genetic dissection of grain iron and zinc, and thousand kernel weight in wheat (Triticum aestivum L.) using genome-wide association study. Scientific Reports, 12(1), 12444.
  • Laddomada, B., Blanco, A., Mita, G., D’Amico, L., Singh, R. P., Ammar, K., ... & Guzmán, C. (2021). Drought and heat stress impacts on phenolic acids accumulation in durum wheat cultivars. Foods, 10(9), 2142.
  • Li, Z., Liu, D., Xia, Y., Li, Z., Niu, N., Ma, S., ... & Zhang, G. (2019). Identification and functional analysis of the CLAVATA3/EMBRYO SURROUNDING REGION (CLE) gene family in wheat. International Journal of Molecular Sciences, 20(17), 4319.
  • Li, P., Luo, T., Pu, X., Zhou, Y., Yu, J., & Liu, L. (2021). Plant transporters: roles in stress responses and effects on growth and development. Plant Growth Regulation, 93, 253-266.
  • Li, X., Ding, M., Wang, M., Yang, S., Ma, X., Hu, J., ... & Liang, W. (2022). Proteome profiling reveals changes in energy metabolism, transport and antioxidation during drought stress in Nostoc flagelliforme. BMC Plant Biology, 22(1), 162.
  • Liu, D. (Ed.). (2024). Handbook of Molecular Biotechnology. CRC Press.
  • Lv, X., Ding, Y., Long, M., Liang, W., Gu, X., Liu, Y., & Wen, X. (2021). Effect of foliar application of various nitrogen forms on starch accumulation and grain filling of wheat (Triticum aestivum L.) under drought stress. Frontiers in plant science, 12, 645379.
  • Madrid-Espinoza, J., Brunel-Saldias, N., Guerra, F. P., Gutiérrez, A., & Del Pozo, A. (2018). Genome-wide identification and transcriptional regulation of aquaporin genes in bread wheat (Triticum aestivum L.) under water stress. Genes, 9(10), 497.
  • Malakondaiah, A. C., Arora, A., Krishna, H., Taria, S., Kumar, S., Devate, N. B., ... & Singh, P. K. (2025). Genome-wide association mapping for stay-green and stem reserve mobilization traits in wheat (Triticum aestivum L.) under combined heat and drought stress. Protoplasma, 1-20.
  • Mao, H., Jian, C., Cheng, X., Chen, B., Mei, F., Li, F., ... & Kang, Z. (2022). The wheat ABA receptor gene TaPYL1‐1B contributes to drought tolerance and grain yield by increasing water‐use efficiency. Plant Biotechnology Journal, 20(5), 846-861.
  • Maqbool, S., Naseer, S., Zahra, N., Rasool, F., Qayyum, H., Majeed, K., ... & Li, H. (2023). RNAseq of diverse spring wheat cultivars released during last 110 years. Scientific Data, 10(1), 884.
  • Milner, M. J., Howells, R. M., Craze, M., Bowden, S., Graham, N., & Wallington, E. J. (2018). A PSTOL-like gene, TaPSTOL, controls a number of agronomically important traits in wheat. BMC plant biology, 18, 1-14.
  • Oono, Y., Kawahara, Y., Kanamori, H., Mizuno, H., Yamagata, H., Yamamoto, M., ... & Matsumoto, T. (2011). mRNA-Seq reveals a comprehensive transcriptome profile of rice under phosphate stress. Rice, 4, 50-65.
  • Pandey, B., Sharma, P., Pandey, D. M., Sharma, I., & Chatrath, R. (2013). Identification of new aquaporin genes and single nucleotide polymorphism in bread wheat. Evolutionary Bioinformatics, 9, EBO-S12568.
  • Passioura, J. B. (1982). Water in the soil-plant-atmosphere continuum. In Physiological plant ecology II: Water relations and carbon assimilation (pp. 5-33). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Placido, D. F., Sandhu, J., Sato, S. J., Nersesian, N., Quach, T., Clemente, T. E., ... & Walia, H. (2020). The LATERAL ROOT DENSITY gene regulates root growth during water stress in wheat. Plant Biotechnology Journal, 18(9), 1955-1968.
  • Ptošková, K., Szecówka, M., Jaworek, P., Tarkowská, D., Petřík, I., Pavlović, I., ... & Hedden, P. (2022). Changes in the concentrations and transcripts for gibberellins and other hormones in a growing leaf and roots of wheat seedlings in response to water restriction. BMC plant biology, 22(1), 284.
  • Rasool, F., Khan, M. R., Schneider, M., Uzair, M., Aqeel, M., Ajmal, W., ... & Naz, A. A. (2022). Transcriptome unveiled the gene expression patterns of root architecture in drought-tolerant and sensitive wheat genotypes. Plant Physiology and Biochemistry, 178, 20-30.
  • Roychoudhry, S., & Kepinski, S. (2022). Auxin in root development. Cold Spring Harbor Perspectives in Biology, 14(4), a039933.
  • Shanker, A. K., Sathee, L., Jain, V., & Raghuram, N. (2024). Plant nutrient use efficiency in the era of climate change. Frontiers in Plant Science, 15, 1402868.
  • Shi, L., Shi, T., Broadley, M. R., White, P. J., Long, Y., Meng, J., ... & Hammond, J. P. (2013). High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities. Annals of Botany, 112(2), 381-389.
  • Sun, R., Gong, J., Liu, Y., Chen, Z., Zhang, F., Gao, J., ... & Gao, S. (2022). Comprehensive molecular evaluation of the histone methyltransferase gene family and their important roles in two-line hybrid wheat. BMC Plant Biology, 22(1), 290.
  • Suneja, Y., Gupta, A. K., Sharma, A., & Bains, N. S. (2015). Differential response of wild and cultivated wheats to water deficits during grain development: changes in soluble carbohydrates and invertases. Physiology and Molecular Biology of Plants, 21, 169-177.
  • Taria, S., Arora, A., Krishna, H., Manjunath, K. K., Kumar, S., Singh, B., ... & Arunachalam, A. (2025). Mapping of the QTLs governing stem-specific weight for stem reserve mobilisation in wheat (Triticum aestivum L.) under combined heat and drought stress. Plant Physiology Reports, 1-15.
  • Thapa, S., Rudd, J. C., Jessup, K. E., Liu, S., Baker, J. A., Devkota, R. N., & Xue, Q. (2022). Middle portion of the wheat culm remobilizes more carbon reserve to grains under drought. Journal of Agronomy and Crop Science, 208(6), 795-804.
  • Qin, T., & Xiong, L. (2019). Subcellular localization and functions of plant lncRNAs in drought and salt stress tolerance. Plant Long Non-Coding RNAs: Methods and Protocols, 173-186.
  • Quan, M., Liu, X., Xiao, L., Chen, P., Song, F., Lu, W., ... & Zhang, D. (2021). Transcriptome analysis and association mapping reveal the genetic regulatory network response to cadmium stress in Populus tomentosa. Journal of experimental botany, 72(2), 576-591.
  • Wang, F., He, Z., Sayre, K., Li, S., Si, J., Feng, B., & Kong, L. (2009). Wheat cropping systems and technologies in China. Field crops research, 111(3), 181-188.
  • Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature reviews genetics, 10(1), 57-63.
  • Xue, G. P., McIntyre, C. L., Jenkins, C. L., Glassop, D., van Herwaarden, A. F., & Shorter, R. (2008). Molecular dissection of variation in carbohydrate metabolism related to water-soluble carbohydrate accumulation in stems of wheat. Plant physiology, 146(2), 441.
  • Yáñez, A., Tapia, G., Guerra, F., & Del Pozo, A. (2017). Stem carbohydrate dynamics and expression of genes involved in fructan accumulation and remobilization during grain growth in wheat (Triticum aestivum L.) genotypes with contrasting tolerance to water stress. PLoS One, 12(5), e0177667.
  • Yang, J., Zhang, G., An, J., Li, Q., Chen, Y., Zhao, X., ... & Wang, W. (2020). Expansin gene TaEXPA2 positively regulates drought tolerance in transgenic wheat (Triticum aestivum L.). Plant science, 298, 110596.
  • Yang, W., Feng, M., Yu, K., Cao, J., Cui, G., Zhang, Y., ... & Xin, M. (2025). The TaCLE24b peptide signaling cascade modulates lateral root development and drought tolerance in wheat. Nature communications, 16(1), 1952.
  • Yu, L., Zhao, X., Gao, X., & Siddique, K. H. (2020). Improving/maintaining water-use efficiency and yield of wheat by deficit irrigation: A global meta-analysis. Agricultural Water Management, 228, 105906.
  • Yue, W., Nie, X., Cui, L., Zhi, Y., Zhang, T., Du, X., & Song, W. (2018). Genome-wide sequence and expressional analysis of autophagy Gene family in bread wheat (Triticum aestivum L.). Journal of plant physiology, 229, 7-21.
  • Zhang, J., Xu, Y., Chen, W., Dell, B., Vergauwen, R., Biddulph, B., ... & Van den Ende, W. (2015). A wheat 1‐FEH w3 variant underlies enzyme activity for stem WSC remobilization to grain under drought. New Phytologist, 205(1), 293-305.
  • Zhang, X., Li, C., Lu, W., Wang, X., Ma, B., Fu, K., ... & Li, C. (2022). Comparative analysis of combined phosphorus and drought stress-responses in two winter wheat. PeerJ, 10, e13887.
  • Zhang, P., He, R., Yang, J., Cai, J., Qu, Z., Yang, R., ... & Wang, D. (2023). The long non-coding RNA DANA2 positively regulates drought tolerance by recruiting ERF84 to promote JMJ29-mediated histone demethylation. Molecular plant, 16(8), 1339-1353.
  • Zhang, Y., Li, Y., de Zeeuw, T., Duijts, K., Kawa, D., Lamers, J., ... & Testerink, C. (2024). Root branching under high salinity requires auxin-independent modulation of LATERAL ORGAN BOUNDARY DOMAIN 16 function. The Plant Cell, 36(4), 899-918.
  • Zhang, T., Zhang, Y., Ding, Y., Yang, Y., Zhao, D., Wang, H., ... & Zhang, H. (2025). Research on the regulation mechanism of drought tolerance in wheat. Plant Cell Reports, 44(4), 1-16.
Toplam 78 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tarla Bitkileri Yetiştirme ve Islahı (Diğer)
Bölüm Derlemeler
Yazarlar

Betül Kayıtmazbatır 0000-0002-3741-6339

Musa Türköz 0000-0002-9580-1884

Sevgi Avci 0009-0006-4521-6149

Yayımlanma Tarihi 3 Eylül 2025
Gönderilme Tarihi 22 Mayıs 2025
Kabul Tarihi 1 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 1

Kaynak Göster

APA Kayıtmazbatır, B., Türköz, M., & Avci, S. (2025). Gene Expression Studies on Water Use Efficiency in Wheat. Wheat Studies, 14(1), 22-34.