Araştırma Makalesi
BibTex RIS Kaynak Göster

ÜNİVERSİTE ÖĞRENCİLERİNİN DERS SEÇİM EĞİLİMLERİNİN BİRLİKTELİK ANALİZİ: FP-GROWTH VE APRİORİ ALGORİTMALARININ KARŞILAŞTIRMALI ANALİZİ

Yıl 2025, Cilt: 11 Sayı: 2, 32 - 44, 24.12.2025

Öz

Bu çalışma, üniversite öğrencilerinin seçmeli ders tercihleri arasındaki gizli örüntüleri ortaya çıkarmak amacıyla veri madenciliği (Data Mining) tekniklerinden biri olan birliktelik kuralı yöntemini kullanmaktadır. Aydın Adnan Menderes Üniversitesi Söke Meslek Yüksekokulu Halkla İlişkiler ve Tanıtım Bölümü öğrencilerinin 2014-2025 yıllarını kapsayan 26066 ders kaydı, SQL ile filtrelenerek sadece seçmeli ve bölüm dışı seçmeli dersleri içerecek şekilde işlenmiş ve analiz için 702 geçerli kayıt elde edilmiştir. Çalışmada Apriori ve FP-Growth (Frequent Pattern-Growth) algoritmaları WEKA yazılımı aracılığıyla uygulanmış; üretilen kurallar destek, güven ve kaldıraç metriklerine göre değerlendirilmiştir. Analizler, iki farklı öğrenci eğilimini ortaya koymuştur: FP-Growth algoritması, öğrencilerin çoğunluğu tarafından yüksek güvenle (%99'a varan) birlikte tercih edilen popüler bir ders kümesini (HIT253, HIT255, HIT257) belirlemiştir. Apriori algoritması ise daha küçük bir öğrenci grubunun mutlak bir kesinlikle (%100 güvenle) aldığı, DTS180 ve TTI253 dersleri etrafında şekillenen spesifik bir ders paketini keşfetmiştir. Elde edilen bulgular, akademik danışmanlık süreçlerinin veriye dayalı olarak iyileştirilmesine ve müfredat planlamasında seçmeli ders havuzlarının daha etkin tasarlanmasına katkı sağlama potansiyeli taşımaktadır. Çalışma ayrıca, kullanılan algoritmaların aynı veri kümesi üzerinden farklı türde örüntüleri nasıl ortaya çıkarabildiğini karşılaştırmalı olarak ele alarak alana yöntemsel bir bakış açısı da sunmaktadır.

Kaynakça

  • Adefemi, K. O., Mutanga, M. B., & Jugoo, V. (2025). Hybrid Deep Learning Models for Predicting Student Academic Performance. Mathematical and Computational Applications, 30(3), 59. https://doi.org/10.3390/mca30030059
  • Agrawal, R. ve Srikant, R. (1994). Fast algorithms for mining association rules. Proceedings of the 20th International Conference on Very Large Data Bases: 487-499.
  • Baker, R. S. J. (2010). Data mining for education. P. Peterson, E. Baker, & B. McGaw (Ed.) International Encyclopedia of Education (3rd Edition): İçinde 112-118. Oxford: Elsevier. https://doi.org/10.5281/zenodo.3554657
  • Baker, R. S. J. ve Yacef, K. (2009). The state of educational data mining in 2009: A review and future visions. Journal of Educational Data Mining, 1(1): 3-17.
  • Bilici, Z. ve Özdemir, D. (2022). Data mining studies in education: Literature review for the years 2014–2020. Bayburt Eğitim Fakültesi Dergisi, 17(33): 342-376. https://doi.org/10.35675/befdergi.849973
  • Chen, M., Han, J. ve Yu, P. S. (2013). Data mining: An overview from a database perspective. IEEE Transactions on Knowledge and Data Engineering, 8(6): 866-883. https://doi.org/10.1109/69.553155
  • Doğan, E. (2023). Okul yönetiminde veriye dayalı karar verme süreci. Kastamonu Education Journal, 31(3): 331-346. https://doi.org/10.24106/kefdergi.910848
  • Esteban, A., Zafra, A. ve Romero, C. (2020). Helping university students to choose elective courses by using a hybrid multi-criteria recommendation system with genetic optimization. Knowledge-Based Systems, 194: 105385. https://doi.org/10.1016/j.knosys.2019.105385
  • Han, J., Pei, J. ve Yin, Y. (2000). Mining frequent patterns without candidate generation. ACM SIGMOD Record, 29(2): 1-12. https://doi.org/10.1145/335191.335372
  • Kumar, V., & Chadha, A. (2012). Mining association rules in student's assessment data. IJCSI International Journal of Computer Science Issues, 9(5, No 3), 211-216.
  • Lin, Y., Chen, H., Xia, W., Lin, F., Wang, Z., & Liu, Y. (2023). A comprehensive survey on deep learning techniques in educational data mining. arXiv preprint arXiv:2309.04761. https://doi.org/10.1007/s41019-025-00303-z
  • Özdemir, A., Saylam, R. ve Bilen, B. B. (2018). Eğitim sisteminde veri madenciliği uygulamaları ve farkındalık üzerine bir durum çalışması. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 32(4): 1139-1158.
  • Pyle, D. (1999). Data Preparation for Data Mining. San Francisco, CA: Morgan Kaufmann.
  • Romero, C. ve Ventura, S. (2010). Educational data mining: A review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6): 601-618. https://doi.org/10.1109/TSMCC.2010.2053532
  • Romero, C. ve Ventura, S. (2013). Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(1): 12-27. https://doi.org/10.1002/widm.1075
  • Vural, M. S. ve Kaplan, S. (2020). Ortak seçmeli derslerdeki tercihlerin istatistiksel analizi ve tespiti. Acta Infologica, 4(1): 35-55. https://dx.doi.org/10.26650/acin.764496
  • Whig, P., Kausar, F., Velu, A., & Bhatia, A. B. (2024). Unveiling the Black Box: Exploring Explainable AI in Education-Trends, Challenges, and Future Directions. ResearchGate Preprint. https://doi.org/10.13140/RG.2.2.18664.65284
  • Witten, I. H. ve Frank, E. (2005). Data Mining: Practical Machine Learning Tools and Techniques. San Francisco, ABD: Morgan Kaufmann.
  • Yang, T., Ren, B., Ma, B., Khan, M. A. Z., He, T., & Konomi, S. (2024). Making Course Recommendation Explainable: A Knowledge Entity-Aware Model using Deep Learning. Proceedings of the 17th International Conference on Educational Data Mining (EDM), 667-672. https://doi.org/10.5281/zenodo.12729910
  • Yavuz, Ö. Ç., Taş, K. ve Çağlar, B. (2023). Türkiye’de yönetim bilişim sistemleri disiplinine genel bakış. Karadeniz Teknik Üniversitesi Sosyal Bilimler Enstitüsü Sosyal Bilimler Dergisi, 13(25): 73-94.
  • Zaiane, O. R., Xin, M. ve Han, J. (2008). Discovering Web access patterns and trends by applying OLAP and data mining technology on Web logs. IEEE Transactions on Knowledge and Data Engineering, 14(5): 731-748.
  • Zhang, Y., & Yang, F. (2021). Application of improved Apriori algorithm in course achievement analysis. Journal of Physics: Conference Series, 1871(1), 012117. https://doi.org/10.1016/j.eswa.2013.08.042
  • Zorrilla, M. ve García-Saiz, D. (2013). A service oriented architecture to provide data mining services for non-expert data miners. Decision Support Systems, 55(1): 399-411. https://doi.org/10.1016/j.dss.2012.05.045

ASSOCIATION ANALYSIS OF UNIVERSITY STUDENTS' COURSE SELECTION PATTERNS: A COMPARATIVE STUDY OF FP-GROWTH AND APRIORI ALGORITHMS

Yıl 2025, Cilt: 11 Sayı: 2, 32 - 44, 24.12.2025

Öz

This study employs association rule mining, a data mining technique, to uncover hidden patterns among university students’ elective course preferences. Based on 26,066 course enrollment records from the Public Relations and Promotion Program at Aydın Adnan Menderes University, Söke Vocational School, between 2014 and 2025, data preprocessing via SQL filtering resulted in 702 valid records for analysis. The Apriori and FP-Growth algorithms were applied using WEKA software, and the extracted rules were evaluated based on support, confidence, and lift metrics. The analyses revealed two distinct student behavior patterns: The FP-Growth algorithm identified a popular cluster of courses (HIT253, HIT255, HIT257) chosen together by the majority of students with high confidence (up to 99%). In contrast, the Apriori algorithm discovered a more specific package of courses, centered around DTS180 and TTI253, selected with absolute certainty (100% confidence) by a smaller group of students. The discovered patterns hold the potential to enhance data-driven academic advising processes and contribute to the more effective design of elective course pools within the curriculum. Furthermore, the study offers a methodological perspective by comparatively analyzing how these algorithms can reveal different types of patterns from the same dataset.

Kaynakça

  • Adefemi, K. O., Mutanga, M. B., & Jugoo, V. (2025). Hybrid Deep Learning Models for Predicting Student Academic Performance. Mathematical and Computational Applications, 30(3), 59. https://doi.org/10.3390/mca30030059
  • Agrawal, R. ve Srikant, R. (1994). Fast algorithms for mining association rules. Proceedings of the 20th International Conference on Very Large Data Bases: 487-499.
  • Baker, R. S. J. (2010). Data mining for education. P. Peterson, E. Baker, & B. McGaw (Ed.) International Encyclopedia of Education (3rd Edition): İçinde 112-118. Oxford: Elsevier. https://doi.org/10.5281/zenodo.3554657
  • Baker, R. S. J. ve Yacef, K. (2009). The state of educational data mining in 2009: A review and future visions. Journal of Educational Data Mining, 1(1): 3-17.
  • Bilici, Z. ve Özdemir, D. (2022). Data mining studies in education: Literature review for the years 2014–2020. Bayburt Eğitim Fakültesi Dergisi, 17(33): 342-376. https://doi.org/10.35675/befdergi.849973
  • Chen, M., Han, J. ve Yu, P. S. (2013). Data mining: An overview from a database perspective. IEEE Transactions on Knowledge and Data Engineering, 8(6): 866-883. https://doi.org/10.1109/69.553155
  • Doğan, E. (2023). Okul yönetiminde veriye dayalı karar verme süreci. Kastamonu Education Journal, 31(3): 331-346. https://doi.org/10.24106/kefdergi.910848
  • Esteban, A., Zafra, A. ve Romero, C. (2020). Helping university students to choose elective courses by using a hybrid multi-criteria recommendation system with genetic optimization. Knowledge-Based Systems, 194: 105385. https://doi.org/10.1016/j.knosys.2019.105385
  • Han, J., Pei, J. ve Yin, Y. (2000). Mining frequent patterns without candidate generation. ACM SIGMOD Record, 29(2): 1-12. https://doi.org/10.1145/335191.335372
  • Kumar, V., & Chadha, A. (2012). Mining association rules in student's assessment data. IJCSI International Journal of Computer Science Issues, 9(5, No 3), 211-216.
  • Lin, Y., Chen, H., Xia, W., Lin, F., Wang, Z., & Liu, Y. (2023). A comprehensive survey on deep learning techniques in educational data mining. arXiv preprint arXiv:2309.04761. https://doi.org/10.1007/s41019-025-00303-z
  • Özdemir, A., Saylam, R. ve Bilen, B. B. (2018). Eğitim sisteminde veri madenciliği uygulamaları ve farkındalık üzerine bir durum çalışması. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 32(4): 1139-1158.
  • Pyle, D. (1999). Data Preparation for Data Mining. San Francisco, CA: Morgan Kaufmann.
  • Romero, C. ve Ventura, S. (2010). Educational data mining: A review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6): 601-618. https://doi.org/10.1109/TSMCC.2010.2053532
  • Romero, C. ve Ventura, S. (2013). Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(1): 12-27. https://doi.org/10.1002/widm.1075
  • Vural, M. S. ve Kaplan, S. (2020). Ortak seçmeli derslerdeki tercihlerin istatistiksel analizi ve tespiti. Acta Infologica, 4(1): 35-55. https://dx.doi.org/10.26650/acin.764496
  • Whig, P., Kausar, F., Velu, A., & Bhatia, A. B. (2024). Unveiling the Black Box: Exploring Explainable AI in Education-Trends, Challenges, and Future Directions. ResearchGate Preprint. https://doi.org/10.13140/RG.2.2.18664.65284
  • Witten, I. H. ve Frank, E. (2005). Data Mining: Practical Machine Learning Tools and Techniques. San Francisco, ABD: Morgan Kaufmann.
  • Yang, T., Ren, B., Ma, B., Khan, M. A. Z., He, T., & Konomi, S. (2024). Making Course Recommendation Explainable: A Knowledge Entity-Aware Model using Deep Learning. Proceedings of the 17th International Conference on Educational Data Mining (EDM), 667-672. https://doi.org/10.5281/zenodo.12729910
  • Yavuz, Ö. Ç., Taş, K. ve Çağlar, B. (2023). Türkiye’de yönetim bilişim sistemleri disiplinine genel bakış. Karadeniz Teknik Üniversitesi Sosyal Bilimler Enstitüsü Sosyal Bilimler Dergisi, 13(25): 73-94.
  • Zaiane, O. R., Xin, M. ve Han, J. (2008). Discovering Web access patterns and trends by applying OLAP and data mining technology on Web logs. IEEE Transactions on Knowledge and Data Engineering, 14(5): 731-748.
  • Zhang, Y., & Yang, F. (2021). Application of improved Apriori algorithm in course achievement analysis. Journal of Physics: Conference Series, 1871(1), 012117. https://doi.org/10.1016/j.eswa.2013.08.042
  • Zorrilla, M. ve García-Saiz, D. (2013). A service oriented architecture to provide data mining services for non-expert data miners. Decision Support Systems, 55(1): 399-411. https://doi.org/10.1016/j.dss.2012.05.045
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Karar Desteği ve Grup Destek Sistemleri
Bölüm Araştırma Makalesi
Yazarlar

Derya Çinar

Gönderilme Tarihi 23 Ekim 2025
Kabul Tarihi 5 Aralık 2025
Yayımlanma Tarihi 24 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 2

Kaynak Göster

APA Çinar, D. (2025). ÜNİVERSİTE ÖĞRENCİLERİNİN DERS SEÇİM EĞİLİMLERİNİN BİRLİKTELİK ANALİZİ: FP-GROWTH VE APRİORİ ALGORİTMALARININ KARŞILAŞTIRMALI ANALİZİ. Yönetim Bilişim Sistemleri Dergisi, 11(2), 32-44.