Araştırma Makalesi
BibTex RIS Kaynak Göster

PREDICTION OF TENSILE STRENGTH BASED ON MELTING POINT AND FLEXIBILITY PROPERTIES OF 3D PRINTER PLASTIC FILAMENTS USING MACHINE LEARNING

Yıl 2024, Cilt: 9 Sayı: 2, 91 - 107, 27.12.2024

Öz

Additive manufacturing is an innovative technology that produces objects by depositing material in layers, commonly known as 3D printing. This method allows for production by adding layers instead of removing material, in contrast to traditional manufacturing, and has led to the widespread use of popular forms such as Fused Deposition Modeling (FDM). In this study, the aim was to develop machine learning techniques for determining the strength values of thermoplastic filaments from different brands in FDM-based 3D printing applications. To achieve this, machine learning algorithms such as Pruned Decision Trees, Support Vector Machines, and Naive Bayes were employed to estimate the strength values of common thermoplastic filaments. The dataset used in this study consists of 800 samples containing information such as plastic type, melting point, flexibility, durability, areas of use, and brand. The performance of the machine learning algorithms was evaluated using standard metrics such as accuracy and F1-score, which provide insights into the model's ability to predict strength values. Notably, the model demonstrated strong performance across all metrics, achieving a 96% success rate with the Pruned Decision Trees algorithm in predicting the strength values of thermoplastic filaments used for 3D printing. These results underscore the effectiveness of machine learning in automatically determining the strength values of filaments in EBM processes, one of the additive manufacturing methods.

Kaynakça

  • [1] Franco Urquiza, E. A. (2024). Advances in additive manufacturing of polymer-fused deposition modeling on textiles: From 3D printing to innovative 4D printing—A review. Polymers, 16(5), 700.
  • [2] Ramful, R. (2024). Numerical modelling of the warping behaviour at the first layer-build plate interface in 3D-printed models produced via the fused deposition modelling process. Advanced Manufacturing Research.
  • [3] ISO/ASTM 52900:2021. (2021). Additive manufacturing—General principles—Fundamentals and vocabulary. Geneva, Switzerland: ISO.
  • [4] Jayanth, N., Jaswanthraj, K., Sandeep, N. H., Mallaya, S. R., & Siddharth, S. (2021). Effect of heat treatment on mechanical properties of 3D printed PLA. Journal of Mechanical Behavior of Biomedical Materials, 123, 104764.
  • [5] Mallikarjuna, B., Bhargav, P., Hiremath, S., & Jayachristiyan, K. G. (2023). A review on the melt extrusion-based fused deposition modeling (FDM): Background, materials, process parameters, and military applications. International Journal on Interactive Design and Manufacturing (IJIDeM), 1-15.
  • [6] Srivatsan, T. S., & Sudarshan, T. S. (2016). Additive manufacturing: Innovations, advances, and applications. New York, NY: CRC Press.
  • [7] Liu, Z., Wang, Y., Wu, B., Cui, C., & Yan, C. (2019). A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. International Journal of Advanced Manufacturing Technology, 102, 2877–2889.
  • [8] Marwah, O. M. F., Shukri, M. S., Mohamad, E. J., Johar, M. A., & Khirotdin, R. H. A. H. K. (2017). Direct investment casting for pattern developed by desktop 3D printer. MATEC Web of Conferences, 135, 00036.
  • [9] Mohamed, O. A., Masood, S. H., & Bhowmik, J. L. (2015). Optimization of fused deposition modeling process parameters: A review of current research and future prospects. Advances in Manufacturing, 3, 42-53.
  • [10] Zhang, M., Zeng, W., Lei, Y., Chen, M., Qin, X., & Li, S. (2022). A novel sustainable luminescent ABS composite material for 3D printing. European Polymer Journal, 176, 111406.
  • [11] Maspoch, M. L., Santana, O. O., Cailloux, J., Franco-Urquiza, E., Rodriguez, C., & Martínez, J. (2015). Ductile-brittle transition behaviour of PLA/o-MMT films during the physical aging process. Express Polymer Letters, 9, 185–195.
  • [12] Bhagia, S., Kore, S., Wasti, S., Ďurkovič, J., Zhao, X., & Andrews, H. B. (2023). 3D printing of a recycled copolyester of terephthalic acid, cyclohexanedimethanol, and tetramethylcyclobutanediol. Polymer Testing, 118, 107916.
  • [13] Kumar, M., Ramakrishnan, R., & Omarbekova, S. (2021). Experimental characterization of mechanical properties and microstructure study of polycarbonate (PC) reinforced acrylonitrile-butadiene-styrene (ABS) composite with varying PC loadings. AIMS Materials Science, 8, 18–28.
  • [14] Andrzejewski, J., & Marciniak-Podsadna, L. (2020). Development of thermal resistant FDM printed blends. The preparation of GPET/PC blends and evaluation of material performance. Materials, 13, 2057.
  • [15] Zhang, Y., Purssell, C., Mao, K., & Leigh, S. A. (2020). Physical investigation of wear and thermal characteristics of 3D printed nylon spur gears. Tribology International, 141, 105953.
  • [16] Russell, S., & Norvig, P. (2020). Artificial intelligence: A modern approach (4th ed.). Pearson.
  • [17] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
  • [18] Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3(3), 417-424.
  • [19] Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford University Press.
  • [20] Mitchell, T. M. (1997). Machine learning. McGraw Hill.
  • [21] Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised machine learning: A review of classification techniques. Emerging Artificial Intelligence Applications in Computer Engineering, 160, 3-24.
  • [22] Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507.
  • [23] Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). MIT Press.
  • [24] Çınar, İ., Gündüz, G., & Yılmaz, Ö. (2020). Machine learning approaches for tensile strength prediction in 3D printed polymers. Journal of Applied Polymer Science, 137(15), 485-492.
  • [25] Yılmaz, M., & Demir, E. (2021). Prediction of tensile strength of 3D printed materials using artificial neural networks and decision trees. Materials & Design, 209, 109930.
  • [26] Huang, Y., Leu, M. C., Mazumder, J., & Donmez, A. (2019). Additive manufacturing: Current state, future potential, gaps and needs, and recommendations. Journal of Manufacturing Science and Engineering, 141(1), 011014.
  • [27] Kaggle. (2024). 3D printer plastics dataset. Retrieved from https://www.kaggle.com/datasets/sourceduty/3d-printer-plastics-2024
  • [28] Quinlan, J. R. (1987). Simplifying decision trees. International Journal of Man-Machine Studies, 27(3), 221-234.
  • [29] Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Wadsworth International Group.
  • [30] Esposito, F., Malerba, D., & Semeraro, G. (1997). A comparative analysis of methods for pruning decision trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(5), 476-491.
  • [31] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.
  • [32] Schölkopf, B., & Smola, A. J. (2002). Learning with kernels: Support vector machines, regularization, optimization, and beyond. MIT Press.
  • [33] Vapnik, V. N. (1995). The nature of statistical learning theory. Springer.
  • [34] Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. Springer.
  • [35] Domingos, P., & Pazzani, M. (1997). On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29(2-3), 103-130.
  • [36] Rish, I. (2001). An empirical study of the naive Bayes classifier. In IJCAI Workshop on Empirical Methods in AI, 3, 41-46.
  • [37] Zhang, H. (2004). The optimality of naive Bayes. In AAAI 2004 Conference on Artificial Intelligence, 562-567.
  • [38] H. Çetiner and S. Metlek, “CNNTuner: Image Classification with A Novel CNN Model Optimized Hyperparameters,” Bitlis Eren Üniversitesi Fen Bilim. Derg., vol. 12, no. 3, pp. 746–763, 2023.
  • [39] Günay, M., Yıldırım, Z., & Demirci, E. (2020). 3D baskı işlem parametrelerinin çekme dayanımı üzerindeki etkileri. Politeknik Dergisi, 23(4), 1043-1050.
  • [40] Wu, J., & Li, F. (2022). Predicting tensile strength in metal 3D printing using support vector machines. Journal of Additive Manufacturing Science, 18(3), 145-157.
  • [41] Zhang, T., Huang, Y., & Chen, L. (2023). Application of artificial neural networks for predicting mechanical properties of PLA and ABS in FDM-based 3D printing. International Journal of Polymer Science, 45(2), 215-227.

MAKİNE ÖĞRENMESİ İLE 3 BOYUTLU YAZICI PLASTİK FİLAMENTLERİNİN ERGİME NOKTASI VE ESNEKLİK ÖZELLİKLERİNE DAYALI ÇEKME DAYANIMININ TAHMİNİ

Yıl 2024, Cilt: 9 Sayı: 2, 91 - 107, 27.12.2024

Öz

Eklemeli imalat, malzemeyi katmanlar halinde biriktirerek nesneler üreten ve genellikle 3D baskı olarak bilinen yenilikçi bir teknolojidir; bu yöntem, geleneksel imalatın aksine malzemeyi çıkarmak yerine katman ekleyerek üretim sağlarken, Ergiyik Biriktirme Modelleme (EBM) gibi popüler formlarının yaygın kullanımına yol açmıştır. Bu çalışmada, EBM tabanlı 3D baskı uygulamalarında farklı markalara ait termoplastik filamentlerin dayanım değerlerinin belirlenmesine yönelik makine öğrenimi tekniklerinin geliştirilmesi hedeflenmiştir. Bu amaç doğrultusunda, yaygın termoplastik filamentlerin dayanım değerlerinin tahmin edilmesi için Pruned Decision Trees, Destek Vektör Makineleri ve Naive Bayes gibi makine öğrenimi algoritmalarından yararlanılmıştır. Bu çalışmada kullanılan veri seti; plastik türü, erime noktası, esneklik, dayanıklılık, kullanım alanları ve marka gibi bilgileri içeren 800 veri örneğinden oluşmaktadır. Makine öğrenme alagoritmaların performansı, modelin dayanım değerini tahmin yeteneği hakkında bilgi sağlayan doğruluk ve F1-skoru gibi standart değerlendirme metrikleri kullanılarak değerlendirilmiştir. Dikkate değer bir şekilde, model tüm metriklerde yüksek bir performans sergileyerek, 3D baskı için kullanılan termoplastik filamentlerin dayanım değerlerinin tahmininde Pruned Decision Trees algoritması ile %96'lık bir başarı oranı elde etmiştir. Bu sonuçlar, makine öğrenmenin eklemeli imalat yöntemlerinden EBM süreçlerindeki filamentlerin dayanım değerlerinin otomatik tespiti konusunda etkinliğini ortaya koymaktadır.

Kaynakça

  • [1] Franco Urquiza, E. A. (2024). Advances in additive manufacturing of polymer-fused deposition modeling on textiles: From 3D printing to innovative 4D printing—A review. Polymers, 16(5), 700.
  • [2] Ramful, R. (2024). Numerical modelling of the warping behaviour at the first layer-build plate interface in 3D-printed models produced via the fused deposition modelling process. Advanced Manufacturing Research.
  • [3] ISO/ASTM 52900:2021. (2021). Additive manufacturing—General principles—Fundamentals and vocabulary. Geneva, Switzerland: ISO.
  • [4] Jayanth, N., Jaswanthraj, K., Sandeep, N. H., Mallaya, S. R., & Siddharth, S. (2021). Effect of heat treatment on mechanical properties of 3D printed PLA. Journal of Mechanical Behavior of Biomedical Materials, 123, 104764.
  • [5] Mallikarjuna, B., Bhargav, P., Hiremath, S., & Jayachristiyan, K. G. (2023). A review on the melt extrusion-based fused deposition modeling (FDM): Background, materials, process parameters, and military applications. International Journal on Interactive Design and Manufacturing (IJIDeM), 1-15.
  • [6] Srivatsan, T. S., & Sudarshan, T. S. (2016). Additive manufacturing: Innovations, advances, and applications. New York, NY: CRC Press.
  • [7] Liu, Z., Wang, Y., Wu, B., Cui, C., & Yan, C. (2019). A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. International Journal of Advanced Manufacturing Technology, 102, 2877–2889.
  • [8] Marwah, O. M. F., Shukri, M. S., Mohamad, E. J., Johar, M. A., & Khirotdin, R. H. A. H. K. (2017). Direct investment casting for pattern developed by desktop 3D printer. MATEC Web of Conferences, 135, 00036.
  • [9] Mohamed, O. A., Masood, S. H., & Bhowmik, J. L. (2015). Optimization of fused deposition modeling process parameters: A review of current research and future prospects. Advances in Manufacturing, 3, 42-53.
  • [10] Zhang, M., Zeng, W., Lei, Y., Chen, M., Qin, X., & Li, S. (2022). A novel sustainable luminescent ABS composite material for 3D printing. European Polymer Journal, 176, 111406.
  • [11] Maspoch, M. L., Santana, O. O., Cailloux, J., Franco-Urquiza, E., Rodriguez, C., & Martínez, J. (2015). Ductile-brittle transition behaviour of PLA/o-MMT films during the physical aging process. Express Polymer Letters, 9, 185–195.
  • [12] Bhagia, S., Kore, S., Wasti, S., Ďurkovič, J., Zhao, X., & Andrews, H. B. (2023). 3D printing of a recycled copolyester of terephthalic acid, cyclohexanedimethanol, and tetramethylcyclobutanediol. Polymer Testing, 118, 107916.
  • [13] Kumar, M., Ramakrishnan, R., & Omarbekova, S. (2021). Experimental characterization of mechanical properties and microstructure study of polycarbonate (PC) reinforced acrylonitrile-butadiene-styrene (ABS) composite with varying PC loadings. AIMS Materials Science, 8, 18–28.
  • [14] Andrzejewski, J., & Marciniak-Podsadna, L. (2020). Development of thermal resistant FDM printed blends. The preparation of GPET/PC blends and evaluation of material performance. Materials, 13, 2057.
  • [15] Zhang, Y., Purssell, C., Mao, K., & Leigh, S. A. (2020). Physical investigation of wear and thermal characteristics of 3D printed nylon spur gears. Tribology International, 141, 105953.
  • [16] Russell, S., & Norvig, P. (2020). Artificial intelligence: A modern approach (4th ed.). Pearson.
  • [17] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
  • [18] Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3(3), 417-424.
  • [19] Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford University Press.
  • [20] Mitchell, T. M. (1997). Machine learning. McGraw Hill.
  • [21] Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised machine learning: A review of classification techniques. Emerging Artificial Intelligence Applications in Computer Engineering, 160, 3-24.
  • [22] Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507.
  • [23] Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). MIT Press.
  • [24] Çınar, İ., Gündüz, G., & Yılmaz, Ö. (2020). Machine learning approaches for tensile strength prediction in 3D printed polymers. Journal of Applied Polymer Science, 137(15), 485-492.
  • [25] Yılmaz, M., & Demir, E. (2021). Prediction of tensile strength of 3D printed materials using artificial neural networks and decision trees. Materials & Design, 209, 109930.
  • [26] Huang, Y., Leu, M. C., Mazumder, J., & Donmez, A. (2019). Additive manufacturing: Current state, future potential, gaps and needs, and recommendations. Journal of Manufacturing Science and Engineering, 141(1), 011014.
  • [27] Kaggle. (2024). 3D printer plastics dataset. Retrieved from https://www.kaggle.com/datasets/sourceduty/3d-printer-plastics-2024
  • [28] Quinlan, J. R. (1987). Simplifying decision trees. International Journal of Man-Machine Studies, 27(3), 221-234.
  • [29] Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Wadsworth International Group.
  • [30] Esposito, F., Malerba, D., & Semeraro, G. (1997). A comparative analysis of methods for pruning decision trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(5), 476-491.
  • [31] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.
  • [32] Schölkopf, B., & Smola, A. J. (2002). Learning with kernels: Support vector machines, regularization, optimization, and beyond. MIT Press.
  • [33] Vapnik, V. N. (1995). The nature of statistical learning theory. Springer.
  • [34] Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. Springer.
  • [35] Domingos, P., & Pazzani, M. (1997). On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29(2-3), 103-130.
  • [36] Rish, I. (2001). An empirical study of the naive Bayes classifier. In IJCAI Workshop on Empirical Methods in AI, 3, 41-46.
  • [37] Zhang, H. (2004). The optimality of naive Bayes. In AAAI 2004 Conference on Artificial Intelligence, 562-567.
  • [38] H. Çetiner and S. Metlek, “CNNTuner: Image Classification with A Novel CNN Model Optimized Hyperparameters,” Bitlis Eren Üniversitesi Fen Bilim. Derg., vol. 12, no. 3, pp. 746–763, 2023.
  • [39] Günay, M., Yıldırım, Z., & Demirci, E. (2020). 3D baskı işlem parametrelerinin çekme dayanımı üzerindeki etkileri. Politeknik Dergisi, 23(4), 1043-1050.
  • [40] Wu, J., & Li, F. (2022). Predicting tensile strength in metal 3D printing using support vector machines. Journal of Additive Manufacturing Science, 18(3), 145-157.
  • [41] Zhang, T., Huang, Y., & Chen, L. (2023). Application of artificial neural networks for predicting mechanical properties of PLA and ABS in FDM-based 3D printing. International Journal of Polymer Science, 45(2), 215-227.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapay Zeka (Diğer)
Bölüm Makaleler
Yazarlar

Muzaffer Eylence 0000-0001-7299-8525

Bekir Aksoy 0000-0001-8052-9411

Koray Özsoy 0000-0001-8663-4466

Yayımlanma Tarihi 27 Aralık 2024
Gönderilme Tarihi 22 Ekim 2024
Kabul Tarihi 18 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 9 Sayı: 2

Kaynak Göster

IEEE M. Eylence, B. Aksoy, ve K. Özsoy, “MAKİNE ÖĞRENMESİ İLE 3 BOYUTLU YAZICI PLASTİK FİLAMENTLERİNİN ERGİME NOKTASI VE ESNEKLİK ÖZELLİKLERİNE DAYALI ÇEKME DAYANIMININ TAHMİNİ”, Yekarum, c. 9, sy. 2, ss. 91–107, 2024.