Derleme
BibTex RIS Kaynak Göster

Taşıt ve Endüstri Kaynaklı Hava Kirleticilerinin Atmosferik Taşınımı ve Partikül Madde Dağılımlarının Model Temelli Değerlendirilmesi

Yıl 2025, Cilt: 10 Sayı: 1, 46 - 60, 04.07.2025

Öz

Bu çalışma, taşıt ve endüstri kaynaklı hava kirleticilerinin atmosferdeki taşınım süreçlerini ve partikül madde (PM₁₀ ve PM₂.₅) dağılımlarını model temelli bir yaklaşımla değerlendirmektedir. Hava kalitesi modelleme çalışmaları, kirleticilerin yayılım dinamiklerinin anlaşılması, etkili kontrol stratejilerinin geliştirilmesi ve çevresel karar süreçlerinin desteklenmesi açısından kritik öneme sahiptir. Bu kapsamda, HYSPLIT, AERMOD, CALPUFF ve CMAQ gibi önde gelen atmosferik modelleme araçları, teorik yapılarına, çözüm yöntemlerine ve uygulama potansiyellerine göre karşılaştırmalı olarak ele alınmıştır. Model seçiminde veri erişimi, emisyon kaynağının niteliği, çalışma ölçeği, kullanıcı kabiliyeti ve bölgesel koşullar gibi çeşitli faktörlerin belirleyici olduğu vurgulanmıştır. Isparta ili özelinde yapılan değerlendirme ile, yerel topografya, meteorolojik yapı ve kaynak dağılımına göre model uygulanabilirliği tartışılmış; mevcut veri sınırlılıkları ve potansiyel çözüm önerileri ortaya konmuştur. Elde edilen bulgular, partikül madde kirliliğinin modellenmesinde uygun model seçiminin, yerel çevre yönetimi ve hava kalitesi iyileştirme stratejileri açısından önemli katkılar sunabileceğini göstermektedir.

Etik Beyan

Çalışma, araştırma ve yayın etiğine uygundur.

Destekleyen Kurum

Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

FDK-2022-8791

Teşekkür

Bu çalışma, Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından FDK-2022-8791 numaralı proje kapsamında sağlanan mali destekle gerçekleştirilmiştir. Aynı zamanda, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü bünyesinde yürütülen doktora tezi kapsamında hazırlanmıştır.

Kaynakça

  • [1] K. Krishnan et al., “Public Perception of Air Pollution in Malaysia Before and After Movement Control Order: A Case Study,” Nat Eng Sci, vol. 10, no. 1, pp. 14–30, Apr. 2025, doi: 10.28978/nesciences.1523895.
  • [2] E. Fazakas, I. A. Neamtiu, and E. S. Gurzau, “Health effects of air pollutant mixtures (volatile organic compounds, particulate matter, sulfur and nitrogen oxides) – a review of the literature,” Rev Environ Health, vol. 39, no. 3, pp. 459–478, Sep. 2024, doi: 10.1515/reveh-2022-0252.
  • [3] Z. Li, K. Zhao, X. Yuan, Y. Zhou, L. Yang, and H. Geng, “Evolution and Control of Air Pollution in China over the Past 75 Years: An Analytical Framework Based on the Multi-Dimensional Urbanization,” Atmosphere (Basel), vol. 15, no. 9, p. 1093, Sep. 2024, doi: 10.3390/atmos15091093.
  • [4] A. Palantzas and V. Beltsiou, “Air pollution and chronic respiratory diseases: A modern challenge for sustainable urban mobility,” E3S Web of Conferences, vol. 585, p. 06006, Nov. 2024, doi: 10.1051/e3sconf/202458506006.
  • [5] Burcu ATAY, Bera EL RACEH, and M. Yunus PAMUKOĞLU, “Hava Kirleticilerinin Bitkiler Üzerindeki Etkileri,” in MÜHENDİSLİKTE ÖNCÜ VE YENİLİKÇİ ÇALIŞMALAR, Umut ÖZKAYA, Ed., All Sciences Academy, 2024, pp. 176–195.
  • [6] D. Schwela, “Particulate Matter Pollution and Health Impacts in Six North African Countries,” European Journal of Development Studies, vol. 4, no. 3, pp. 1–22, May 2024, doi: 10.24018/ejdevelop.2024.4.3.350.
  • [7] P. Franke, A. C. Lange, B. Steffens, A. Pozzer, A. Wahner, and A. Kiendler-Scharr, “European air quality in view of the WHO 2021 guideline levels: Effect of emission reductions on air pollution exposure,” Elem Sci Anth, vol. 12, no. 1, May 2024, doi: 10.1525/elementa.2023.00127.
  • [8] G. A. Olah, G. K. S. Prakash, and A. Goeppert, “Anthropogenic Chemical Carbon Cycle for a Sustainable Future,” J Am Chem Soc, vol. 133, no. 33, pp. 12881–12898, Aug. 2011, doi: 10.1021/ja202642y.
  • [9] M. Rahnama Mobarakeh and T. Kienberger, “Climate neutrality strategies for energy-intensive industries: An Austrian case study,” Clean Eng Technol, vol. 10, p. 100545, Oct. 2022, doi: 10.1016/j.clet.2022.100545.
  • [10] D. A. Grantz, J. H. B. Garner, and D. W. Johnson, “Ecological effects of particulate matter,” Environ Int, vol. 29, no. 2–3, pp. 213–239, Jun. 2003, doi: 10.1016/S0160-4120(02)00181-2.
  • [11] S. Esposito et al., “How air pollution fuels respiratory infections in children: current insights,” Front Public Health, vol. 13, Apr. 2025, doi: 10.3389/fpubh.2025.1567206.
  • [12] F. K. Nkansah, E. J. D. Belford, J. N. Hogarh, A. K. Anim, and S. E. Achoribo, “Photosynthetic Pigments and Heavy Metal Accumulation in Urban Tree Species as Bioindicators of Vehicular Pollution,” Mar. 03, 2025. doi: 10.21203/rs.3.rs-6085946/v1.
  • [13] W. Hu et al., “Photochemical Degradation of Organic Matter in the Atmosphere,” Adv Sustain Syst, vol. 5, no. 11, Nov. 2021, doi: 10.1002/adsu.202100027.
  • [14] D. Vione et al., “Photochemical reactions in the tropospheric aqueous phase and on particulate matter,” Chem Soc Rev, 2006, doi: 10.1039/b510796m.
  • [15] M. Chin, T. Diehl, P. Ginoux, and W. Malm, “Intercontinental transport of pollution and dust aerosols: implications for regional air quality,” Atmos Chem Phys, vol. 7, no. 21, pp. 5501–5517, Nov. 2007, doi: 10.5194/acp-7-5501-2007.
  • [16] Afifa, K. Arshad, N. Hussain, M. H. Ashraf, and M. Z. Saleem, “Air pollution and climate change as grand challenges to sustainability,” Science of The Total Environment, vol. 928, p. 172370, Jun. 2024, doi: 10.1016/j.scitotenv.2024.172370.
  • [17] J. S. Apte and C. Manchanda, “High-resolution urban air pollution mapping,” Science (1979), vol. 385, no. 6707, pp. 380–385, Jul. 2024, doi: 10.1126/science.adq3678.
  • [18] H. Achebak et al., “Geographic sources of ozone air pollution and mortality burden in Europe,” Nat Med, vol. 30, no. 6, pp. 1732–1738, Jun. 2024, doi: 10.1038/s41591-024-02976-x.
  • [19] R. Sivaranjanee, P. Senthil Kumar, B. Chitra, and G. Rangasamy, “A critical review on biochar for the removal of toxic pollutants from water environment,” Chemosphere, vol. 360, p. 142382, Jul. 2024, doi: 10.1016/j.chemosphere.2024.142382.
  • [20] Zolani Ndlovu, “Turbulent diffusion and air pollution: A comprehensive review of mechanisms, impacts, and modeling approaches,” World Journal of Advanced Research and Reviews, vol. 23, no. 3, pp. 1511–1525, Sep. 2024, doi: 10.30574/wjarr.2024.23.3.2784.
  • [21] P. P. Nyayapathi, S. Namuduri, and S. K. Kolli, “A comprehensive review of vertical profiling of ambient air quality-particulate matter and its impacts on climatic & environmental health,” Air Qual Atmos Health, Feb. 2025, doi: 10.1007/s11869-025-01697-5.
  • [22] D. Buske, M. T. Vilhena, T. Tirabassi, and B. Bodmann, “Air Pollution Steady-State Advection-Diffusion Equation: The General Three-Dimensional Solution,” J Environ Prot (Irvine, Calif), vol. 03, no. 09, pp. 1124–1134, 2012, doi: 10.4236/jep.2012.329131.
  • [23] D. Quevedo, K. Do, G. Delic, J. Rodríguez-Borbón, B. M. Wong, and C. E. Ivey, “GPU Implementation of a Gas-Phase Chemistry Solver in the CMAQ Chemical Transport Model,” ACS ES&T Air, vol. 2, no. 2, pp. 226–235, Feb. 2025, doi: 10.1021/acsestair.4c00181.
  • [24] M. Yunus PAMUKOĞLU and Ali TEKELİ, “ISPARTA İLİNİN EKİM 2020-MART 2021 TARİHLERİ ARASINDAKİ HAVA KALİTE PARAMETRELERİNİN HYSPLIT PROGRAMI İLE MODELLENMESİ,” in Mühendislik Bilimleri Alanında Yeni Trendler, Prof. Dr. Birol KILIÇ and Prof. Dr. Gülden BAŞYİĞİT KILIÇ, Eds., Duvar Yayınları, 2022, pp. 399–434.
  • [25] L. Canché-Cab, L. San-Pedro, B. Ali, M. Rivero, and M. Escalante, “The atmospheric boundary layer: a review of current challenges and a new generation of machine learning techniques,” Artif Intell Rev, vol. 57, no. 12, p. 331, Oct. 2024, doi: 10.1007/s10462-024-10962-5.
  • [26] F. Tahir Bahadur, S. Rasool Shah, and R. Rao Nidamanuri, “Air Pollution Monitoring, and Modelling: An Overview,” Environ Forensics, vol. 25, no. 5, pp. 309–336, Sep. 2024, doi: 10.1080/15275922.2023.2297437. [27] S. Guttikunda, S. K. Dammalapati, and N. KA, “<span>Landscape Review of Air Quality Modeling in India</span>,” SSRN Electronic Journal, 2024, doi: 10.2139/ssrn.5004903.
  • [28] F. Tahir Bahadur, S. Rasool Shah, and R. Rao Nidamanuri, “Air Pollution Monitoring, and Modelling: An Overview,” Environ Forensics, vol. 25, no. 5, pp. 309–336, Sep. 2024, doi: 10.1080/15275922.2023.2297437.
  • [29] N. Lichiheb, F. Ngan, and M. Cohen, “Improving the atmospheric dispersion forecasts over Washington, D.C. using UrbanNet observations: A study with HYSPLIT model,” Urban Clim, vol. 55, p. 101948, May 2024, doi: 10.1016/j.uclim.2024.101948.
  • [30] N. Gammoudi, J. Kovács, F. Gresina, and G. Varga, “Combined use of HYSPLIT model and MODIS aerosols optical depth to study the spatiotemporal circulation patterns of Saharan dust events over Central Europe,” Aeolian Res, vol. 67–69, p. 100899, Sep. 2024, doi: 10.1016/j.aeolia.2024.100899.
  • [31] M. Basso Dos Santos, N. Santini Baratto, T. Antunes Kelm, L. Pochmann de Souza, and L. Padilha Thives, “Air quality assessment through AERMOD model: a case study of an asphalt plant in Brazil,” International Journal of Environmental Science and Technology, vol. 22, no. 9, pp. 7519–7532, May 2025, doi: 10.1007/s13762-024-06143-0.
  • [32] S. H. Mohd Shafie, “Application of AERMOD dispersion model for assessment PM10 concentrations from mobile sources in Kuala Lumpur Metropolitan City, Malaysia,” Environ Monit Assess, vol. 196, no. 10, p. 969, Oct. 2024, doi: 10.1007/s10661-024-13088-x.
  • [33] M. Li, C. Lo, D. Yang, Y. Li, and Z. Li, “Comparative Study of CALPUFF and CFD Modeling of Toxic Gas Dispersion in Mountainous Environments,” Atmosphere (Basel), vol. 15, no. 11, p. 1370, Nov. 2024, doi: 10.3390/atmos15111370.
  • [34] O. M. Bayraktar and A. Mutlu, “Analyses of industrial air pollution and long-term health risk using different dispersion models and WRF physics parameters,” Air Qual Atmos Health, vol. 17, no. 10, pp. 2277–2305, Oct. 2024, doi: 10.1007/s11869-024-01573-8.
  • [35] H. Wang et al., “MEIAT-CMAQ: A modular emission inventory allocation tool for Community Multiscale Air Quality Model,” Atmos Environ, vol. 331, p. 120604, Aug. 2024, doi: 10.1016/j.atmosenv.2024.120604.
  • [36] T. da Costa, J. Carvalho, R. Pedruzzi, T. Albuquerque, and E. Martins, “Systematic Review of Tropospheric Ozone Modeling Using Community Multiscale Air Quality Model (CMAQ),” J Braz Chem Soc, 2024, doi: 10.21577/0103-5053.20240042.
  • [37] K. S. Rautela, S. Singh, and M. K. Goyal, “Characterizing the spatio-temporal distribution, detection, and prediction of aerosol atmospheric rivers on a global scale,” J Environ Manage, vol. 351, p. 119675, Feb. 2024, doi: 10.1016/j.jenvman.2023.119675.
  • [38] K. S. Rautela, S. Singh, and M. K. Goyal, “Resilience to Air Pollution: A Novel Approach for Detecting and Predicting Aerosol Atmospheric Rivers within Earth System Boundaries,” Earth Systems and Environment, vol. 9, no. 1, pp. 93–115, Jan. 2025, doi: 10.1007/s41748-024-00421-0.
  • [39] S. Demir, “Determination of suitable agricultural areas and current land use in Isparta Province, Türkiye, through a linear combination technique and geographic information systems,” Environ Dev Sustain, vol. 26, no. 5, pp. 13455–13493, Feb. 2024, doi: 10.1007/s10668-023-04359-7.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği (Diğer)
Bölüm Derleme
Yazarlar

Yunus Pamukoğlu 0000-0003-3337-0860

Burcu Atay

Proje Numarası FDK-2022-8791
Yayımlanma Tarihi 4 Temmuz 2025
Gönderilme Tarihi 13 Mayıs 2025
Kabul Tarihi 26 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 1

Kaynak Göster

IEEE Y. Pamukoğlu ve B. Atay, “Taşıt ve Endüstri Kaynaklı Hava Kirleticilerinin Atmosferik Taşınımı ve Partikül Madde Dağılımlarının Model Temelli Değerlendirilmesi”, Yekarum, c. 10, sy. 1, ss. 46–60, 2025.