Derleme
BibTex RIS Kaynak Göster

Biosensor Platforms for Cancer Derived Exosomes Detection

Yıl 2021, Cilt: 2 Sayı: 3, 22 - 31, 30.07.2021

Öz

Early diagnosis is one of the biggest challenges in the fight
against cancer. Traditional cancer diagnosis methods have
some disadvantages such as requiring expertise, involving
invasive procedures, radiation exposure, high cost and loss
of time. For this reason, current research has focused on the
development of faster, reliable and cost-effective diagnostic
methods.
The use of biomarkers present in body fluids has been promising in this regard. Exosomes secreted by cells into body fluids
and responsible for intercellular communication are biological nanoparticles produced by natural pathways. Studies have
shown that the change in microenvironmental conditions during tumor development changes exosome secretion. Due to
their high cellular activities, tumor cells produce a much higher rate of exosome than healthy cells. Therefore, it is known
that the number of exosomes in body fluids is significantly
enriched compared to other cells and can act as a diagnostic
biomarker alone. Cancer-derived exosomes are very interesting for early detection of cancer and evaluation of therapeutic
response. Biosensor is an analytical device used to detect an analyte that combines a biological component with a physicochemical detector. Nowadaysthere is an increasing interest in developing cancer biosensors with superior analytical performance and real-time measurement. The development and
dissemination of biosensor applications for exosome detection will be very advantageous for individuals in regions where there is no access to diagnostic devices and resources. Considering the disadvantages of traditional methods, we can say that biosensor studies are much more advantageous because
they are cheaper, provide multi-analyte support, provide high sensitivity, and obtain fast and reliable results. In this study,
recent developments in biosensor systems for the detection of exosomes secreted from different cancer cells are summarized.
In addition, the use of cancer-secreted exosomes for point of care testing (POC) and the challenges in this area are presented and discussed.

Kaynakça

  • 1. Villarreal-Gómez, L. J., Soria-Mercado, I. E., Hernandez-Gómez, M., & Giraldi, R. G. (2015). Detection of molecular markers of cancer through the use of biosensors. Biol Med (Aligarh) S,2,
  • 2. Jainish, P., & Prittesh, P. (2017). Biosensors and biomarkers: promising tools for cancer diagnosis. Int J Biosen Bioelectron, 3(4), 00072.
  • 3. Makaju, S., Prasad, P. W. C., Alsadoon, A., Singh, A. K., & Elchouemi, A. (2018). Lung cancer detection using CT scan images. Procedia Computer Science, 125, 107-114.
  • 4. Schoots, I. G. (2018). MRI in early prostate cancer detection: how to manage indeterminate or equivocal PI-RADS 3 lesions?. Translational andrology and urology, 7(1), 70.
  • 5. Babayan, A., & Pantel, K. (2018). Advances in liquid biopsy approaches for early detection and monitoring of cancer. Genome medicine, 10(1), 1-3.
  • 6. Zhu, C. Z., Ting, H. N., Ng, K. H., & Ong, T. A. (2019). A review on the accuracy of bladder cancer detection methods. Journal of Cancer, 10(17), 4038. 7. Weinstein, D., Leininger, J., Hamby, C., & Safai, B. (2014). Diagnostic and prognostic biomarkers in melanoma. The Journal of clinical and aesthetic dermatology, 7(6), 13.
  • 8. Zhang, Y., Liu, Y., Liu, H., & Tang, W. H. (2019). Exosomes: biogenesis, biologic function and clinical potential. Cell & bioscience, 9(1), 19.
  • 9. Lorencova, L., Bertok, T., Bertokova, A., Gajdosova, V., Hroncekova, S., Vikartovska, A., ...Tkac, J. (2020). Exosomes as a Source of Cancer Biomarkers: Advances in Electrochemical Biosensing of Exosomes. ChemElectroChem
  • 10. Logozzi, M., Mizzoni, D., Angelini, D. F., Di Raimo, R., Falchi, M., Battistini, L., & Fais, S. (2018). Microenvironmental pH and exosome levels interplay in human cancer cell lines of different histotypes. Cancers, 10(10), 370.
  • 11. McNicholas, K., & Michael, M. Z. (2017). Immuno-characterization of exosomes using nanoparticle tracking analysis. In Exosomes and Microvesicles (pp. 35-42). Humana Press, New York, NY.
  • 12. Lyu, T. S., Ahn, Y., Im, Y. J., Kim, S. S., Lee, K. H., Kim, J., ... & Cho, J. A. (2021). The characterization of exosomes from fibrosarcoma cell and the useful usage of Dynamic Light Scattering (DLS) for their evaluation. Plos one, 16(1), e0231994.
  • 13. Raghu, D., Christodoulides, J. A., Christophersen, M., Liu, J. L., Anderson, G. P., Robitaille, M., ... & Raphael, M. P. (2018). Nanoplasmonic pillars engineered for single exosome detection. PloS one, 13(8), e0202773.
  • 14. Nikishin, I., Dulimov, R., Skryabin, G., Galetsky, S., Tchevkina, E., & Bagrov, D. (2021). ScanEV–A neural network-based tool for the automated detection of extracellular vesicles in TEM images. Micron, 145, 103044.
  • 15. Khodashenas, S., Khalili, S., & Moghadam, M. F. (2019). A cell ELISA based method for exosome detection in diagnostic and therapeutic applications. Biotechnology letters, 41(4), 523-531.
  • 16. Ma, M., Li, B., Zhang, M., Zhou, L., Yang, F., Ma, F., ... & Zhang, X. (2020). Therapeutic effects of mesenchymal stem cell-derived exosomes on retinal detachment. Experimental eye research, 191, 107899.
  • 17. Jankovičová, J., Sečová, P., Michalková, K., & Antalíková, J. (2020). Tetraspanins, More than Markers of Extracellular Vesicles in Reproduction. International Journal of Molecular Sciences, 21(20), 7568.
  • 18. Jiang, C., Yao, Y., Cai, Y., & Ping, J. (2019). All-solid-state potentiometric sensor using single-walled carbon nanohorns as transducer. Sensors and Actuators B: Chemical, 283, 284- 289.
  • 19. Kokkinos, C., & Economou, A. (2020). Recent advances in voltammetric, amperometric and ion-selective (bio) sensors fabricated by microengineering manufacturing approaches. Current Opinion in Electrochemistry, 23, 21-25.
  • 20. Girigoswami, K., & Akhtar, N. (2019). Nanobiosensors and fluorescence based biosensors: An overview. International Journal of Nano Dimension, 10(1), 1-17.
  • 21. Liu, B., Zhuang, J., & Wei, G. (2020). Recent advances in the design of colorimetric sensors for environmental monitoring. Environmental Science: Nano, 7(8), 2195-2213.
  • 22. Pol, L., Acosta, L. K., Ferré-Borrull, J., & Marsal, L. F. (2019). Aptamer- based nanoporous anodic alumina interferometric biosensor for real- time thrombin detection. Sensors, 19(20), 4543.
  • 23. Pohanka, M. (2018). Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials, 11(3), 448.
  • 24. Gaddes, D., Reeves, W. B., & Tadigadapa, S. (2017). Calorimetric biosensing system for quantification of urinary creatinine. ACS sensors, 2(6), 796- 802.
  • 25. Williams, T. C., Pretorius, I. S., & Paulsen, I. T. (2016). Synthetic evolution of metabolic productivity using biosensors. Trends in biotechnology, 34(5), 371-381.
  • 26. Chen, N., Guo, W., Lin, Z., Wei, Q., & Chen, G. (2018). Label-free sensitive luminescence biosensor for immunoglobulin G based on Ag6Au6 ethisterone cluster-estrogen receptor α aggregation and graphene. Talanta, 185, 243-248.
  • 27. Pang, Y., Wang, C., Lu, L., Wang, C., Sun, Z., & Xiao, R. (2019). Dual-SERS biosensor for one-step detection of microRNAs in exosome and residual plasma of blood samples for diagnosing pancreatic cancer. Biosensors and Bioelectronics, 130, 204-213.
  • 28. Sina, A. A. I., Vaidyanathan, R., Wuethrich, A., Carrascosa, L. G., & Trau, M. (2019). Label-free detection of exosomes using a surface plasmon resonance biosensor. Analytical and bioanalytical chemistry, 411(7), 1311- 1318.
  • 29. Kim, T. J., Türkcan, S., & Pratx, G. (2017). Modular low-light microscope for imaging cellular bioluminescence and radioluminescence. Nature protocols, 12(5), 1055-1076.
  • 30. Hananya, N., Reid, J. P., Green, O., Sigman, M. S., & Shabat, D. (2019). Rapid chemiexcitation of phenoxy-dioxetane luminophores yields ultrasensitive chemiluminescence assays. Chemical science, 10(5), 1380-1385.
  • 31. Viter, R., Savchuk, M., Starodub, N., Balevicius, Z., Tumenas, S., Ramanaviciene, A., ... & Ramanavicius, A. (2019). Photoluminescence immunosensor based on bovine leukemia virus proteins immobilized on the ZnO nanorods. Sensors and Actuators B: Chemical, 285, 601-606.
  • 32. Thacharodi, A., Jeganathan, C., & Thacharodi, D. (2019). Biomonitoring of heavy metal pollution by bioluminescent bacterial biosensors. Indian J Sci Technol, 15, 12-20.
  • 33. Zhang, P., He, M., & Zeng, Y. (2016). Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab on a Chip, 16(16), 3033-3042.
  • 34. Zhang, H., Wang, Z., Zhang, Q., Wang, F., & Liu, Y. (2019). Ti3C2 MXenes nanosheets catalyzed highly efficient electrogenerated chemiluminescence biosensor for the detection of exosomes. Biosensors and Bioelectronics, 124, 184-190.
  • 35. Huang, L., Wang, D. B., Singh, N., Yang, F., Gu, N., & Zhang, X. E. (2018). A dual- signal amplification platform for sensitive fluorescence biosensing of leukemia-derived exosomes. Nanoscale, 10(43), 20289- 20295.
  • 36. Piliarik, M., Vaisocherová, H., & Homola, J. (2009). Surface plasmon resonance biosensing. Biosensors and Biodetection, 65-88. 37. Grasso, L., Wyss, R., Weidenauer, L., Thampi, A., Demurtas, D., Prudent, M., ... & Vogel, H. (2015). Molecular screening of cancer-derived exosomes by surface plasmon resonance spectroscopy. Analytical and bioanalytical chemistry, 407(18), 5425-5432.
  • 38. Hosseinkhani, B., van den Akker, N., D’Haen, J., Gagliardi, M., Struys, T., Lambrichts, I., et al., 2017. Direct detection of nano-scale extracellular vesicles derived from inflammation- triggered endothelial cells using surface plasmon resonance. Nanomed. Nanotechnol. Biol. Med. 13 (5), 1663–1671.
  • 39. Park, J., Lin, H.-Y., Assaker, J.P., Jeong, S., Huang, C.-H., Kurdi, A., et al., 2017. Integrated kidney exosome analysis for the detection of kidney transplant rejection. ACS Nano 11 (11), 11041–11046.
  • 40. Xia, Y., Liu, M., Wang, L., Yan, A., He, W., Chen, M., ... & Chen, J. (2017). A visible and colorimetric aptasensor based on DNA-capped single-walled carbon nanotubes for detection of exosomes. Biosensors and Bioelectronics, 92, 8-15.
  • 41. Yang, Y., Li, C., Shi, H., Chen, T., Wang, Z., Li, G., 2019. A pH-responsive bioassay for paper-based diagnosis of exosomes via mussel-inspired surface chemistry. Talanta 192, 325–330.
  • 42. Oliveira-Rodríguez, M., Serrano-Pertierra, E., García, A.C., Martín, S.L., Mo, M.Y., Cernuda-Morollon, E., et al., 2017. Point-of-care detection of extracellular vesicles: sensitivity optimization and multiple-target detection. Biosens. Bioelectron. 87, 38–45.
  • 43. Zong, S., Wang, L., Chen, C., Lu, J., Zhu, D., Zhang, Y., et al., 2016. Facile detection of tumor-derived exosomes using magnetic nanobeads and SERS nanoprobes. Analytical Methods 8 (25), 5001–5008.
  • 44. Weng, Z., Zong, S., Wang, Y., Li, N., Li, L., Lu, J., et al., 2018. Screening and multiple detection of cancer exosomes using an SERS-based method. Nanoscale 10 (19), 9053–9062.
  • 45. Kwizera, E.A., O’Connor, R., Vinduska, V., Williams, M., Butch, E.R., Snyder, S.E., et al., 2018. Molecular detection and analysis of exosomes using surface-enhanced Raman scattering gold nanorods and a miniaturized device. Theranostics 8 (10), 2722–2738.
  • 46. Tian, Y. F., Ning, C. F., He, F., Yin, B. C., & Ye, B. C. (2018). Highly sensitive detection of exosomes by SERS using gold nanostar@ Raman reporter@ nanoshell structures modified with a bivalent cholesterol-labeled DNA anchor. Analyst, 143(20), 4915-49-22.
  • 47. Ma, D., Huang, C., Zheng, J., Tang, J., Li, J., Yang, J., et al., 2018. Quantitative detection of exosomal microRNA extracted from human blood based on surface-enhanced Raman scattering. Biosens. Bioelectron. 101, 167–173.
  • 48. Shin, H., Jeong, H., Park, J., Hong, S., & Choi, Y. (2018). Correlation between cancerous exosomes and protein markers based on surface- enhanced Raman spectroscopy (SERS) and principal component analysis (PCA). ACS sensors, 3(12), 2637-2643.
  • 49. Seifati, S.M., Nasirizadeh, N., Azimzadeh, M., 2017. Nano-biosensor based on reduced graphene oxide and gold nanoparticles, for detection of phenylketonuria-associated DNA mutation. IET Nanobiotechnol. 12 (4), 417–422
  • 50. Im, H., Yang, K.S., Lee, H., Castro, C.M., 2018. Nanotechnology Platforms for Cancer Exosome Analyses. Diagnostic and Therapeutic Applications of Exosomes in Cancer. Elsevier, pp. 119–128.
  • 51. Doldan, X., Fagúndez, P., Cayota, A., Laíz, J., Tosar, J.P., 2016. Electrochemical sandwich immunosensor for determination of exosomes based on surface markermediated signal amplification. Anal. Chem. 88 (21), 10466–10473.
  • 52. Boriachek, K., Islam, M.N., Gopalan, V., Lam, A.K., Nguyen, N.T., Shiddiky, M.J.A., 2017. Quantum dot-based sensitive detection of disease specific exosome in serum. Analyst 142 (12), 2211–2219
  • 53. Yadav, S., Boriachek, K., Islam, M.N., Lobb, R., M€oller, A., Hill, M.M., et al., 2017. An electrochemical method for the detection of disease- specific exosomes. ChemElectroChem 4 (4), 967–971.
  • 54. Li, Q., Tofaris, G.K., Davis, J.J., 2017. Concentration-normalized electroanalytical assaying of exosomal markers. Anal. Chem. 89 (5), 3184– 3190.
  • 55. Kilic, T., Valinhas, A.T.D.S., Wall, I., Renaud, P., Carrara, S., 2018. Label- free detection of hypoxia-induced extracellular vesicle secretion from MCF-7 cells. Sci. Rep. 8 (1), 9402.
  • 56. Zhou Q, Rahimian A, Son K, Shin DS, Patel T, Revzin A. Development of an aptasensor for electrochemical detection of exosomes. Methods. 2016;97:88–93.
  • 57. Liu, X., Wang, Q., Chen, J., Chen, X., & Yang, W. (2021). Ultrasensitive electrochemiluminescence biosensor for the detection of tumor exosomes based on peptide recognition and luminol-AuNPs@ g-C3N4 nanoprobe signal amplification. Talanta, 221, 121379.
  • 58. Qiao, B., Guo, Q., Jiang, J., Qi, Y., Zhang, H., He, B., ... & Shen, J. (2019). An electrochemiluminescent aptasensor for amplified detection of exosomes from breast tumor cells (MCF-7 cells) based on G-quadruplex/ hemin DNAzymes. Analyst, 144(11), 3668-3675.
  • 59. Li, R., An, Y., Jin, T., Zhang, F., & He, P. (2021). Detection of MUC1 protein on tumor cells and their derived exosomes for breast cancer surveillance with an electrochemiluminescence aptasensor. Journal of Electroanalytical Chemistry, 882, 115011.

Kanser Kaynaklı Eksozom Tespitinde Biyosensör Platformlar

Yıl 2021, Cilt: 2 Sayı: 3, 22 - 31, 30.07.2021

Öz

Erken teşhis kansere karşı mücadeledeki en büyük zorluklardan biridir. Geleneksel kanser tanı yöntemlerinin uzmanlık
gerektirmesi, invaziv işlem içermesi, radyasyon maruziyeti,
yüksek maliyet ve zaman kaybına neden olması gibi birtakım
dezavantajlara sahiptir. Bu nedenle mevcut araştırmalar daha
hızlı, güvenilir ve uygun maliyetli tanı yöntemlerinin geliştirilmesine odaklanmıştır. Vücut sıvılarında var olan biyobelirteçlerin kullanımı bu anlamda umut verici olmuştur.
Hücreler tarafından vücut sıvılarına salgılanan ve hücreler arası
iletişimden sorumlu olan ekzosomlar, doğal yolaklarla üretilen
biyolojik nanopartiküllerdir. Tümör gelişimi esnasında mikroçevre koşullarında meydana gelen değişimin ekzosom sekresyonunu değiştirdiği yapılan çalışmalarca ortaya konmuştur.
Tümör hücreleri yüksek hücresel aktiviteleri nedeniyle, sağlıklı
hücrelere göre çok daha yüksek oranda ekzosom üretimi gerçekleştirmektedir. Dolayısıyla vücut sıvılarında bulunan ekzosomların sayısı, diğer hücrelere göre ciddi oranda zenginleştiği
ve tek başına tanısal biyobelirteç olarak görev yapabildiği bilinmektedir. Kanser kaynaklı eksozomlar, kanserin erken teşhisi
ve terapötik yanıt değerlendirmesi için oldukça ilgi çekicidir.
Biyosensör, biyolojik bir bileşeni fizikokimyasal bir detektörle
birleştiren bir analitin saptanması için kullanılan analitik bir
cihazdır. Günümüzde, üstün analitik performans ve gerçek
zamanlı ölçüm gösterdikleri için kanser biyosensörlerini geliştirmesine yönelik artan bir ilgi vardır. Ekzosom tespiti için
biyosensör uygulamaların geliştirilmesi ve yaygınlaştırılması,
teşhis cihazlarına ve kaynaklarına erişimi olmayan bölgelerdeki bireyler için oldukça avantaj sağlayacaktır. Geleneksel
yöntemlerin dezavantajları göz önünde bulundurulduğunda
biyosensör çalışmalarının daha ucuz, çoklu analit desteği sağlaması, yüksek hassasiyet sağlaması ve hızlı, güvenilir sonuçlar
elde etmesi nedeniyle çok daha avantajlı olduğu söyleyebiliriz.
Bu çalışmada farklı kanser hücrelerinden salgılanan eksozomların tespiti için biyosensör sistemlerdeki son gelişmeler özetlenmiştir. Ayrıca, bakım noktası testleri (POC) için kanserden salgılanan eksozomların kullanımı ve bu alandaki zorluklar
sunulmaktadır.

Kaynakça

  • 1. Villarreal-Gómez, L. J., Soria-Mercado, I. E., Hernandez-Gómez, M., & Giraldi, R. G. (2015). Detection of molecular markers of cancer through the use of biosensors. Biol Med (Aligarh) S,2,
  • 2. Jainish, P., & Prittesh, P. (2017). Biosensors and biomarkers: promising tools for cancer diagnosis. Int J Biosen Bioelectron, 3(4), 00072.
  • 3. Makaju, S., Prasad, P. W. C., Alsadoon, A., Singh, A. K., & Elchouemi, A. (2018). Lung cancer detection using CT scan images. Procedia Computer Science, 125, 107-114.
  • 4. Schoots, I. G. (2018). MRI in early prostate cancer detection: how to manage indeterminate or equivocal PI-RADS 3 lesions?. Translational andrology and urology, 7(1), 70.
  • 5. Babayan, A., & Pantel, K. (2018). Advances in liquid biopsy approaches for early detection and monitoring of cancer. Genome medicine, 10(1), 1-3.
  • 6. Zhu, C. Z., Ting, H. N., Ng, K. H., & Ong, T. A. (2019). A review on the accuracy of bladder cancer detection methods. Journal of Cancer, 10(17), 4038. 7. Weinstein, D., Leininger, J., Hamby, C., & Safai, B. (2014). Diagnostic and prognostic biomarkers in melanoma. The Journal of clinical and aesthetic dermatology, 7(6), 13.
  • 8. Zhang, Y., Liu, Y., Liu, H., & Tang, W. H. (2019). Exosomes: biogenesis, biologic function and clinical potential. Cell & bioscience, 9(1), 19.
  • 9. Lorencova, L., Bertok, T., Bertokova, A., Gajdosova, V., Hroncekova, S., Vikartovska, A., ...Tkac, J. (2020). Exosomes as a Source of Cancer Biomarkers: Advances in Electrochemical Biosensing of Exosomes. ChemElectroChem
  • 10. Logozzi, M., Mizzoni, D., Angelini, D. F., Di Raimo, R., Falchi, M., Battistini, L., & Fais, S. (2018). Microenvironmental pH and exosome levels interplay in human cancer cell lines of different histotypes. Cancers, 10(10), 370.
  • 11. McNicholas, K., & Michael, M. Z. (2017). Immuno-characterization of exosomes using nanoparticle tracking analysis. In Exosomes and Microvesicles (pp. 35-42). Humana Press, New York, NY.
  • 12. Lyu, T. S., Ahn, Y., Im, Y. J., Kim, S. S., Lee, K. H., Kim, J., ... & Cho, J. A. (2021). The characterization of exosomes from fibrosarcoma cell and the useful usage of Dynamic Light Scattering (DLS) for their evaluation. Plos one, 16(1), e0231994.
  • 13. Raghu, D., Christodoulides, J. A., Christophersen, M., Liu, J. L., Anderson, G. P., Robitaille, M., ... & Raphael, M. P. (2018). Nanoplasmonic pillars engineered for single exosome detection. PloS one, 13(8), e0202773.
  • 14. Nikishin, I., Dulimov, R., Skryabin, G., Galetsky, S., Tchevkina, E., & Bagrov, D. (2021). ScanEV–A neural network-based tool for the automated detection of extracellular vesicles in TEM images. Micron, 145, 103044.
  • 15. Khodashenas, S., Khalili, S., & Moghadam, M. F. (2019). A cell ELISA based method for exosome detection in diagnostic and therapeutic applications. Biotechnology letters, 41(4), 523-531.
  • 16. Ma, M., Li, B., Zhang, M., Zhou, L., Yang, F., Ma, F., ... & Zhang, X. (2020). Therapeutic effects of mesenchymal stem cell-derived exosomes on retinal detachment. Experimental eye research, 191, 107899.
  • 17. Jankovičová, J., Sečová, P., Michalková, K., & Antalíková, J. (2020). Tetraspanins, More than Markers of Extracellular Vesicles in Reproduction. International Journal of Molecular Sciences, 21(20), 7568.
  • 18. Jiang, C., Yao, Y., Cai, Y., & Ping, J. (2019). All-solid-state potentiometric sensor using single-walled carbon nanohorns as transducer. Sensors and Actuators B: Chemical, 283, 284- 289.
  • 19. Kokkinos, C., & Economou, A. (2020). Recent advances in voltammetric, amperometric and ion-selective (bio) sensors fabricated by microengineering manufacturing approaches. Current Opinion in Electrochemistry, 23, 21-25.
  • 20. Girigoswami, K., & Akhtar, N. (2019). Nanobiosensors and fluorescence based biosensors: An overview. International Journal of Nano Dimension, 10(1), 1-17.
  • 21. Liu, B., Zhuang, J., & Wei, G. (2020). Recent advances in the design of colorimetric sensors for environmental monitoring. Environmental Science: Nano, 7(8), 2195-2213.
  • 22. Pol, L., Acosta, L. K., Ferré-Borrull, J., & Marsal, L. F. (2019). Aptamer- based nanoporous anodic alumina interferometric biosensor for real- time thrombin detection. Sensors, 19(20), 4543.
  • 23. Pohanka, M. (2018). Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials, 11(3), 448.
  • 24. Gaddes, D., Reeves, W. B., & Tadigadapa, S. (2017). Calorimetric biosensing system for quantification of urinary creatinine. ACS sensors, 2(6), 796- 802.
  • 25. Williams, T. C., Pretorius, I. S., & Paulsen, I. T. (2016). Synthetic evolution of metabolic productivity using biosensors. Trends in biotechnology, 34(5), 371-381.
  • 26. Chen, N., Guo, W., Lin, Z., Wei, Q., & Chen, G. (2018). Label-free sensitive luminescence biosensor for immunoglobulin G based on Ag6Au6 ethisterone cluster-estrogen receptor α aggregation and graphene. Talanta, 185, 243-248.
  • 27. Pang, Y., Wang, C., Lu, L., Wang, C., Sun, Z., & Xiao, R. (2019). Dual-SERS biosensor for one-step detection of microRNAs in exosome and residual plasma of blood samples for diagnosing pancreatic cancer. Biosensors and Bioelectronics, 130, 204-213.
  • 28. Sina, A. A. I., Vaidyanathan, R., Wuethrich, A., Carrascosa, L. G., & Trau, M. (2019). Label-free detection of exosomes using a surface plasmon resonance biosensor. Analytical and bioanalytical chemistry, 411(7), 1311- 1318.
  • 29. Kim, T. J., Türkcan, S., & Pratx, G. (2017). Modular low-light microscope for imaging cellular bioluminescence and radioluminescence. Nature protocols, 12(5), 1055-1076.
  • 30. Hananya, N., Reid, J. P., Green, O., Sigman, M. S., & Shabat, D. (2019). Rapid chemiexcitation of phenoxy-dioxetane luminophores yields ultrasensitive chemiluminescence assays. Chemical science, 10(5), 1380-1385.
  • 31. Viter, R., Savchuk, M., Starodub, N., Balevicius, Z., Tumenas, S., Ramanaviciene, A., ... & Ramanavicius, A. (2019). Photoluminescence immunosensor based on bovine leukemia virus proteins immobilized on the ZnO nanorods. Sensors and Actuators B: Chemical, 285, 601-606.
  • 32. Thacharodi, A., Jeganathan, C., & Thacharodi, D. (2019). Biomonitoring of heavy metal pollution by bioluminescent bacterial biosensors. Indian J Sci Technol, 15, 12-20.
  • 33. Zhang, P., He, M., & Zeng, Y. (2016). Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab on a Chip, 16(16), 3033-3042.
  • 34. Zhang, H., Wang, Z., Zhang, Q., Wang, F., & Liu, Y. (2019). Ti3C2 MXenes nanosheets catalyzed highly efficient electrogenerated chemiluminescence biosensor for the detection of exosomes. Biosensors and Bioelectronics, 124, 184-190.
  • 35. Huang, L., Wang, D. B., Singh, N., Yang, F., Gu, N., & Zhang, X. E. (2018). A dual- signal amplification platform for sensitive fluorescence biosensing of leukemia-derived exosomes. Nanoscale, 10(43), 20289- 20295.
  • 36. Piliarik, M., Vaisocherová, H., & Homola, J. (2009). Surface plasmon resonance biosensing. Biosensors and Biodetection, 65-88. 37. Grasso, L., Wyss, R., Weidenauer, L., Thampi, A., Demurtas, D., Prudent, M., ... & Vogel, H. (2015). Molecular screening of cancer-derived exosomes by surface plasmon resonance spectroscopy. Analytical and bioanalytical chemistry, 407(18), 5425-5432.
  • 38. Hosseinkhani, B., van den Akker, N., D’Haen, J., Gagliardi, M., Struys, T., Lambrichts, I., et al., 2017. Direct detection of nano-scale extracellular vesicles derived from inflammation- triggered endothelial cells using surface plasmon resonance. Nanomed. Nanotechnol. Biol. Med. 13 (5), 1663–1671.
  • 39. Park, J., Lin, H.-Y., Assaker, J.P., Jeong, S., Huang, C.-H., Kurdi, A., et al., 2017. Integrated kidney exosome analysis for the detection of kidney transplant rejection. ACS Nano 11 (11), 11041–11046.
  • 40. Xia, Y., Liu, M., Wang, L., Yan, A., He, W., Chen, M., ... & Chen, J. (2017). A visible and colorimetric aptasensor based on DNA-capped single-walled carbon nanotubes for detection of exosomes. Biosensors and Bioelectronics, 92, 8-15.
  • 41. Yang, Y., Li, C., Shi, H., Chen, T., Wang, Z., Li, G., 2019. A pH-responsive bioassay for paper-based diagnosis of exosomes via mussel-inspired surface chemistry. Talanta 192, 325–330.
  • 42. Oliveira-Rodríguez, M., Serrano-Pertierra, E., García, A.C., Martín, S.L., Mo, M.Y., Cernuda-Morollon, E., et al., 2017. Point-of-care detection of extracellular vesicles: sensitivity optimization and multiple-target detection. Biosens. Bioelectron. 87, 38–45.
  • 43. Zong, S., Wang, L., Chen, C., Lu, J., Zhu, D., Zhang, Y., et al., 2016. Facile detection of tumor-derived exosomes using magnetic nanobeads and SERS nanoprobes. Analytical Methods 8 (25), 5001–5008.
  • 44. Weng, Z., Zong, S., Wang, Y., Li, N., Li, L., Lu, J., et al., 2018. Screening and multiple detection of cancer exosomes using an SERS-based method. Nanoscale 10 (19), 9053–9062.
  • 45. Kwizera, E.A., O’Connor, R., Vinduska, V., Williams, M., Butch, E.R., Snyder, S.E., et al., 2018. Molecular detection and analysis of exosomes using surface-enhanced Raman scattering gold nanorods and a miniaturized device. Theranostics 8 (10), 2722–2738.
  • 46. Tian, Y. F., Ning, C. F., He, F., Yin, B. C., & Ye, B. C. (2018). Highly sensitive detection of exosomes by SERS using gold nanostar@ Raman reporter@ nanoshell structures modified with a bivalent cholesterol-labeled DNA anchor. Analyst, 143(20), 4915-49-22.
  • 47. Ma, D., Huang, C., Zheng, J., Tang, J., Li, J., Yang, J., et al., 2018. Quantitative detection of exosomal microRNA extracted from human blood based on surface-enhanced Raman scattering. Biosens. Bioelectron. 101, 167–173.
  • 48. Shin, H., Jeong, H., Park, J., Hong, S., & Choi, Y. (2018). Correlation between cancerous exosomes and protein markers based on surface- enhanced Raman spectroscopy (SERS) and principal component analysis (PCA). ACS sensors, 3(12), 2637-2643.
  • 49. Seifati, S.M., Nasirizadeh, N., Azimzadeh, M., 2017. Nano-biosensor based on reduced graphene oxide and gold nanoparticles, for detection of phenylketonuria-associated DNA mutation. IET Nanobiotechnol. 12 (4), 417–422
  • 50. Im, H., Yang, K.S., Lee, H., Castro, C.M., 2018. Nanotechnology Platforms for Cancer Exosome Analyses. Diagnostic and Therapeutic Applications of Exosomes in Cancer. Elsevier, pp. 119–128.
  • 51. Doldan, X., Fagúndez, P., Cayota, A., Laíz, J., Tosar, J.P., 2016. Electrochemical sandwich immunosensor for determination of exosomes based on surface markermediated signal amplification. Anal. Chem. 88 (21), 10466–10473.
  • 52. Boriachek, K., Islam, M.N., Gopalan, V., Lam, A.K., Nguyen, N.T., Shiddiky, M.J.A., 2017. Quantum dot-based sensitive detection of disease specific exosome in serum. Analyst 142 (12), 2211–2219
  • 53. Yadav, S., Boriachek, K., Islam, M.N., Lobb, R., M€oller, A., Hill, M.M., et al., 2017. An electrochemical method for the detection of disease- specific exosomes. ChemElectroChem 4 (4), 967–971.
  • 54. Li, Q., Tofaris, G.K., Davis, J.J., 2017. Concentration-normalized electroanalytical assaying of exosomal markers. Anal. Chem. 89 (5), 3184– 3190.
  • 55. Kilic, T., Valinhas, A.T.D.S., Wall, I., Renaud, P., Carrara, S., 2018. Label- free detection of hypoxia-induced extracellular vesicle secretion from MCF-7 cells. Sci. Rep. 8 (1), 9402.
  • 56. Zhou Q, Rahimian A, Son K, Shin DS, Patel T, Revzin A. Development of an aptasensor for electrochemical detection of exosomes. Methods. 2016;97:88–93.
  • 57. Liu, X., Wang, Q., Chen, J., Chen, X., & Yang, W. (2021). Ultrasensitive electrochemiluminescence biosensor for the detection of tumor exosomes based on peptide recognition and luminol-AuNPs@ g-C3N4 nanoprobe signal amplification. Talanta, 221, 121379.
  • 58. Qiao, B., Guo, Q., Jiang, J., Qi, Y., Zhang, H., He, B., ... & Shen, J. (2019). An electrochemiluminescent aptasensor for amplified detection of exosomes from breast tumor cells (MCF-7 cells) based on G-quadruplex/ hemin DNAzymes. Analyst, 144(11), 3668-3675.
  • 59. Li, R., An, Y., Jin, T., Zhang, F., & He, P. (2021). Detection of MUC1 protein on tumor cells and their derived exosomes for breast cancer surveillance with an electrochemiluminescence aptasensor. Journal of Electroanalytical Chemistry, 882, 115011.
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Birinci Basamak Sağlık Hizmetleri
Bölüm Derlemeler
Yazarlar

Kübra Kelleci Bu kişi benim 0000-0002-9409-2254

Sevil Özer Bu kişi benim 0000-0002-0186-763X

Yayımlanma Tarihi 30 Temmuz 2021
Gönderilme Tarihi 14 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 2 Sayı: 3

Kaynak Göster

AMA Kelleci K, Özer S. Biosensor Platforms for Cancer Derived Exosomes Detection. JMS. Temmuz 2021;2(3):22-31.