Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2025, Cilt: 8 Sayı: 4, 3824 - 3849, 31.12.2025
https://doi.org/10.51576/ymd.1814595

Öz

Kaynakça

  • Allen, J. B., ve Berkley, D.A. (1979). Image method for efficiently simulating small room acoustics. Journal of the Acoustical Society of America, 65(4), 943-950. https://doi.org/10.1121/1.382599
  • Arfken, G. B., ve Weber, H. (2005). Mathematical methods for physicists (6th ed.). Burlington, MA: Elsevier Academic.
  • Bader, R. (2018). Computational acoustics: Sound synthesis by physical modeling. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-63438-5
  • Begault, D. R. (2000). 3D sound for virtual reality and multimedia. San Diego, CA: Academic Press.
  • Blauert, J. (1997). Spatial hearing: The psychophysics of human sound localization (Rev. ed.). Cambridge MA: MIT Press.
  • Blackman, R. B., ve Tukey, J. W. (1958). The measurement of power spectra, from the point of view of communications engineering. New York, NY: Dover Publications.
  • Christensen, C. L., ve Rindel, J. H. (2005). Room acoustics simulation: Methods and evaluation. Applied Acoustics, 68(5), 487–511. https://doi.org/10.1016/j.apacoust.2005.03.007
  • Farina, A. (2000). Simultaneous measurement of impulse response and distortion with a swept- sine technique. Audio Engineering Society Convention Proceedings, 108, 1–24. https://www.aes.org/e-lib/browse.cfm?elib=10211
  • Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 66(1), 51–83. https://doi.org/10.1109/PROC.1978.10837
  • Lyon, R. (2017). Human and machine hearing: Extracting meaning from sound. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781316799895
  • Mellor, P. (2011). Measurement and calibration of audio systems: Practical techniques for accurate sound analysis. Waltham, MA: Focal Press.
  • Møller, H. (1992). Fundamentals of binaural technology. Applied Acoustics, 36(3–4), 171–218. https://doi.org/10.1016/0003-682X(92)90046-B
  • Müller, S., ve Massarani, P. (2001). Transfer-function measurement with sweeps. Journal of the Audio Engineering Society, 49(6), 443–471. https://www.aes.org/e-lib/browse.cfm?elib=10189
  • Nuttall, A. H. (1981). Some windows with very good sidelobe behavior. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29(1), 84–91. https://doi.org/10.1109/TASSP.1981.1163506
  • Oppenheim, A. V., ve Schafer, R. W. (2010). Discrete-time signal processing (3rd ed.). Upper Saddle River, NJ: Pearson.
  • Proakis, J. G. ve Manolakis, D. G. (2007). Digital signal processing: Principles, algorithms, and applications (4th ed.). Upper Saddle River, NJ: Prentice Hall.
  • Smith, S. W. (2011). The scientist and engineer’s guide to digital signal processing. San Diego, CA: Technical Publishing.
  • Stan, G.-B., Embrechts, J.-J., ve Archambeau, D. (2001). Comparison of different impulse response measurement techniques. Journal of the Audio Engineering Society, 49(4), 249–262. https://www.aes.org/e-lib/browse.cfm?elib=10211
  • Vorländer, M. (2020). Auralization: Fundamentals of acoustics, modelling, simulation, algorithms and acoustic virtual reality. Chan, Switzerland: Springer. https://doi.org/10.1121/1.2908264
  • Web Kaynakları ISO. (2012). ISO 3745:2012 Acoustics — Determination of sound power levels and sound energy levels of noise sources using sound pressure — Precision methods for anechoic rooms and hemi-anechoic rooms. International Organization for Standardization. (Erişim adresi: https://www.iso.org/standard/53946.html), (Erişim tarihi: 10 Ekim 2025).

DÜRTÜ TEPKİSİ ANALİZİNDE HANN, RECTANGULAR VE BLACKMAN PENCERELEME TEKNİKLERİNİN KARŞILAŞTIRMALI DEĞERLENDİRMESİ

Yıl 2025, Cilt: 8 Sayı: 4, 3824 - 3849, 31.12.2025
https://doi.org/10.51576/ymd.1814595

Öz

Dürtü tepkisi (impulse response) bir sistemin kendisine uygulanan ani bir uyarana zaman içinde verdiği yanıttır. Dürtü tepkisi ölçümleri, bir sistemin ya da ortamın akustik özelliklerini zamana bağlı olarak karakterize eden temel bir ölçüm yöntemi olarak kullanılmaktadır. Hoparlör, oda veya mikrofon gibi herhangi bir akustik sistemin girişe verdiği tepkinin tespit edilmesini sağlayarak yankı süresi, frekans cevabı ve faz ilişkisi gibi önemli parametrelerin belirlenmesine olanak tanır. Bu nedenle IR ölçümleri, oda akustiği değerlendirmeleri, hoparlör kalibrasyonu, uzamsal işitme araştırmaları ve dijital ses işleme algoritmalarının geliştirilmesi gibi birçok uygulamada kritik bir öneme sahiptir. IR ölçümlerinde pencereleme işlemi ise sinyali belirli bir zaman aralığında sınırlayarak istenmeyen sızıntıların ve bozulmaların azaltılmasını sağlamaktadır. Farklı pencereleme fonksiyonları, frekans çözünürlüğü ve spektral sızıntı arasında bir denge kurar. Bu bağlamda çalışma, farklı pencereleme tekniklerinin çözülmüş dürtü tepkilerinin frekans çözünürlükleri, gecikme ve spektral özellikleri üzerindeki etkilerini incelemektedir.
Deneysel süreçte ölçümler, TÜBİTAK UME'de (Ulusal Metroloji Enstitüsü) el yapımı binaural mikrofon aracılığıyla kontrollü bir stereo konfigürasyonu altında logaritmik sinüs tarama sinyali kullanılarak gerçekleştirilmiş, veri toplama ve analiz işlemleri REW yazılımı aracılığıyla yürütülmüştür. Aynı veri setine üç klasik pencere fonksiyonu Hann, Rectangular ve Blackman uygulanmıştır. Her bir pencerenin spektral sızıntıyı azaltma ve frekans detayını koruma performansı karşılaştırmalı olarak değerlendirilmiştir. Bulgular, pencere fonksiyonu seçiminin ölçülen yanıtların spektral doğruluğunu önemli ölçüde etkilediğini göstermektedir. Karşılaştırılan her bir pencere türünün, analizin amacına bağlı olarak belirli avantajlar ve kısıtlamalara sahip olduğu ortaya konmuştur. Çalışma, akustik ölçüm yöntemlerinin doğruluk ve güvenilirliğini artırmak amacıyla, pencereleme tekniklerinin metodolojik etkilerini sistematik biçimde ortaya koyarak bu alandaki araştırmacılar için pratik bir çerçeve sağlamaktadır.

Kaynakça

  • Allen, J. B., ve Berkley, D.A. (1979). Image method for efficiently simulating small room acoustics. Journal of the Acoustical Society of America, 65(4), 943-950. https://doi.org/10.1121/1.382599
  • Arfken, G. B., ve Weber, H. (2005). Mathematical methods for physicists (6th ed.). Burlington, MA: Elsevier Academic.
  • Bader, R. (2018). Computational acoustics: Sound synthesis by physical modeling. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-63438-5
  • Begault, D. R. (2000). 3D sound for virtual reality and multimedia. San Diego, CA: Academic Press.
  • Blauert, J. (1997). Spatial hearing: The psychophysics of human sound localization (Rev. ed.). Cambridge MA: MIT Press.
  • Blackman, R. B., ve Tukey, J. W. (1958). The measurement of power spectra, from the point of view of communications engineering. New York, NY: Dover Publications.
  • Christensen, C. L., ve Rindel, J. H. (2005). Room acoustics simulation: Methods and evaluation. Applied Acoustics, 68(5), 487–511. https://doi.org/10.1016/j.apacoust.2005.03.007
  • Farina, A. (2000). Simultaneous measurement of impulse response and distortion with a swept- sine technique. Audio Engineering Society Convention Proceedings, 108, 1–24. https://www.aes.org/e-lib/browse.cfm?elib=10211
  • Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 66(1), 51–83. https://doi.org/10.1109/PROC.1978.10837
  • Lyon, R. (2017). Human and machine hearing: Extracting meaning from sound. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781316799895
  • Mellor, P. (2011). Measurement and calibration of audio systems: Practical techniques for accurate sound analysis. Waltham, MA: Focal Press.
  • Møller, H. (1992). Fundamentals of binaural technology. Applied Acoustics, 36(3–4), 171–218. https://doi.org/10.1016/0003-682X(92)90046-B
  • Müller, S., ve Massarani, P. (2001). Transfer-function measurement with sweeps. Journal of the Audio Engineering Society, 49(6), 443–471. https://www.aes.org/e-lib/browse.cfm?elib=10189
  • Nuttall, A. H. (1981). Some windows with very good sidelobe behavior. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29(1), 84–91. https://doi.org/10.1109/TASSP.1981.1163506
  • Oppenheim, A. V., ve Schafer, R. W. (2010). Discrete-time signal processing (3rd ed.). Upper Saddle River, NJ: Pearson.
  • Proakis, J. G. ve Manolakis, D. G. (2007). Digital signal processing: Principles, algorithms, and applications (4th ed.). Upper Saddle River, NJ: Prentice Hall.
  • Smith, S. W. (2011). The scientist and engineer’s guide to digital signal processing. San Diego, CA: Technical Publishing.
  • Stan, G.-B., Embrechts, J.-J., ve Archambeau, D. (2001). Comparison of different impulse response measurement techniques. Journal of the Audio Engineering Society, 49(4), 249–262. https://www.aes.org/e-lib/browse.cfm?elib=10211
  • Vorländer, M. (2020). Auralization: Fundamentals of acoustics, modelling, simulation, algorithms and acoustic virtual reality. Chan, Switzerland: Springer. https://doi.org/10.1121/1.2908264
  • Web Kaynakları ISO. (2012). ISO 3745:2012 Acoustics — Determination of sound power levels and sound energy levels of noise sources using sound pressure — Precision methods for anechoic rooms and hemi-anechoic rooms. International Organization for Standardization. (Erişim adresi: https://www.iso.org/standard/53946.html), (Erişim tarihi: 10 Ekim 2025).

COMPARATIVE EVALUATION OF HANN, RECTANGULAR AND BLACKMAN WINDOWING TECHNIQUES FOR IMPULSE RESPONSE ANALYSIS

Yıl 2025, Cilt: 8 Sayı: 4, 3824 - 3849, 31.12.2025
https://doi.org/10.51576/ymd.1814595

Öz

The impulse response refers to the reaction of a system over time when subjected to a sudden external excitation. Impulse response measurements serve as a fundamental method for characterizing the time-dependent acoustic properties of a system or environment. By revealing how an acoustic system, such as a loudspeaker, room, or microphone, responds to an input signal, these measurements allow for the determination of essential parameters, including reverberation time, frequency response, and phase relationship. Therefore, IR measurements have critical importance in many applications such as room acoustic evaluation, loudspeaker calibration, spatial hearing research, and the development of digital signal processing algorithms. The windowing process in IR measurements limits the signal within a specific time interval to reduce unwanted leakages and distortions. Different windowing functions establish a balance between frequency resolution and spectral leakage. In this context, the study examines the effects of different windowing techniques on the frequency resolution, delay, and spectral properties of deconvolved impulse responses.
In the experimental process, the measurements were carried out in the full anechoic chamber of TÜBİTAK UME (The Scientific and Technological Research Council of Turkiye - National Metrology Institute of Turkiye) using a handmade binaural microphone. The measurements were conducted under a controlled stereo configuration using a logarithmic sine sweep signal, and data acquisition and analysis were performed through REW software. Three classical window functions, Hann, Rectangular, and Blackman, were applied to the same dataset. The performance of each window in reducing spectral leakage and preserving frequency detail was evaluated comparatively.
The findings show that the selection of the window function significantly affects the spectral accuracy of the measured responses. Each type of window presents specific advantages and limitations depending on the analytical purpose. The study provides a systematic evaluation of the methodological effects of windowing techniques to enhance the accuracy and reliability of acoustic measurement methods and offers a practical framework for researchers working on binaural impulse response analysis.

Kaynakça

  • Allen, J. B., ve Berkley, D.A. (1979). Image method for efficiently simulating small room acoustics. Journal of the Acoustical Society of America, 65(4), 943-950. https://doi.org/10.1121/1.382599
  • Arfken, G. B., ve Weber, H. (2005). Mathematical methods for physicists (6th ed.). Burlington, MA: Elsevier Academic.
  • Bader, R. (2018). Computational acoustics: Sound synthesis by physical modeling. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-63438-5
  • Begault, D. R. (2000). 3D sound for virtual reality and multimedia. San Diego, CA: Academic Press.
  • Blauert, J. (1997). Spatial hearing: The psychophysics of human sound localization (Rev. ed.). Cambridge MA: MIT Press.
  • Blackman, R. B., ve Tukey, J. W. (1958). The measurement of power spectra, from the point of view of communications engineering. New York, NY: Dover Publications.
  • Christensen, C. L., ve Rindel, J. H. (2005). Room acoustics simulation: Methods and evaluation. Applied Acoustics, 68(5), 487–511. https://doi.org/10.1016/j.apacoust.2005.03.007
  • Farina, A. (2000). Simultaneous measurement of impulse response and distortion with a swept- sine technique. Audio Engineering Society Convention Proceedings, 108, 1–24. https://www.aes.org/e-lib/browse.cfm?elib=10211
  • Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 66(1), 51–83. https://doi.org/10.1109/PROC.1978.10837
  • Lyon, R. (2017). Human and machine hearing: Extracting meaning from sound. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781316799895
  • Mellor, P. (2011). Measurement and calibration of audio systems: Practical techniques for accurate sound analysis. Waltham, MA: Focal Press.
  • Møller, H. (1992). Fundamentals of binaural technology. Applied Acoustics, 36(3–4), 171–218. https://doi.org/10.1016/0003-682X(92)90046-B
  • Müller, S., ve Massarani, P. (2001). Transfer-function measurement with sweeps. Journal of the Audio Engineering Society, 49(6), 443–471. https://www.aes.org/e-lib/browse.cfm?elib=10189
  • Nuttall, A. H. (1981). Some windows with very good sidelobe behavior. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29(1), 84–91. https://doi.org/10.1109/TASSP.1981.1163506
  • Oppenheim, A. V., ve Schafer, R. W. (2010). Discrete-time signal processing (3rd ed.). Upper Saddle River, NJ: Pearson.
  • Proakis, J. G. ve Manolakis, D. G. (2007). Digital signal processing: Principles, algorithms, and applications (4th ed.). Upper Saddle River, NJ: Prentice Hall.
  • Smith, S. W. (2011). The scientist and engineer’s guide to digital signal processing. San Diego, CA: Technical Publishing.
  • Stan, G.-B., Embrechts, J.-J., ve Archambeau, D. (2001). Comparison of different impulse response measurement techniques. Journal of the Audio Engineering Society, 49(4), 249–262. https://www.aes.org/e-lib/browse.cfm?elib=10211
  • Vorländer, M. (2020). Auralization: Fundamentals of acoustics, modelling, simulation, algorithms and acoustic virtual reality. Chan, Switzerland: Springer. https://doi.org/10.1121/1.2908264
  • Web Kaynakları ISO. (2012). ISO 3745:2012 Acoustics — Determination of sound power levels and sound energy levels of noise sources using sound pressure — Precision methods for anechoic rooms and hemi-anechoic rooms. International Organization for Standardization. (Erişim adresi: https://www.iso.org/standard/53946.html), (Erişim tarihi: 10 Ekim 2025).
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Müzik Teknolojisi ve Kayıt
Bölüm Araştırma Makalesi
Yazarlar

Uğur Baloğlu 0000-0002-9949-1342

Gönderilme Tarihi 31 Ekim 2025
Kabul Tarihi 2 Aralık 2025
Erken Görünüm Tarihi 10 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 4

Kaynak Göster

APA Baloğlu, U. (2025). DÜRTÜ TEPKİSİ ANALİZİNDE HANN, RECTANGULAR VE BLACKMAN PENCERELEME TEKNİKLERİNİN KARŞILAŞTIRMALI DEĞERLENDİRMESİ. Yegah Müzikoloji Dergisi, 8(4), 3824-3849. https://doi.org/10.51576/ymd.1814595


 SCImago Journal & Country Rank