Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, , 163 - 173, 30.06.2023
https://doi.org/10.29133/yyutbd.1231881

Öz

Destekleyen Kurum

İSTANBUL ÜNİVERSİTESİ, BİLİMSEL ARAŞTIRMA PROJELERİ MERKEZİ

Proje Numarası

55858

Kaynakça

  • Apak, R., Guclu, K., Ozyurek, M. & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agriculture Food Chemistry, 52, 7970–7981.
  • Ayati, Z., Amiri, M.S., Ramezani, M., Delshad, E., Sahebkar, A., Emami, S.A. (2019). Phytochemistry, Traditional Uses and Pharmacological Profile of Rose Hip: A Review. Curr. Pharm. Des, 24, 4101–4124.
  • Benito, P. & Miller, D. (1998). Iron absorption and bioavailability: anupdated review. Nutrition Research, 18, 581–603.
  • Benzie, I.F. & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analysis Biochemistry, 239, 70–76.
  • Bhuyan, D.J. & Basu, A. (2017). Utilisation of bioactive compounds derived from waste in the food industry. In Utilisation of Bioactive Compounds from Agricultural and Food Production Waste; Vuong, Q.V., Ed.; CRC Press: Boca Ratón, FL, USA, 342–357.
  • Cakir, O. & Ergen, B. (2021). Assessment of Wild R. pimpinellifolia L. According to Mineral Content and Bioactive Compounds. European Journal of Science and Technology, 25, 644-649.
  • Capanoglu, E., Beekwilder, J., Boyacioglu, D., Hall, R. & De Vos, R. (2008). Changes in antioxidant and metabolite profiles during production of tomato paste, Journal of Agriculture Food Chemistry, 56, 964-973.
  • Cosme, P., Rodríguez, A. B., Espino, J. & Garrido, M. (2020). Plant phenolics: Bioavailability as a key determinant of their potential health promoting applications. Antioxidants, 9 (12), 1263.
  • Dewanto, V., Wu, X.Z., Adom, K.K. & Liu, R.H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity, Journal of Agriculture Food Chemistry, 50, 3010–3014.
  • Dogan, A. & Kazankaya, A. (2006). Fruit properties of rose hip species grown in lake Van basin (eastern Anatolia region), Asian Journal Plant Science, 5 (1),120-2.
  • Fernàndez-Garcìa, E., Carvajal-Lérida, I. & Pérez Gàlvez, A. (2009). In vitro bioaccessibility assessment as a prediction tool ofnutritional efficiency. Nutrition Research, 29, 751–60.
  • Fetni, S., Bertella, N. & Ouahab, A. (2020). LC– DAD/ESI–MS/MS characterization of phenolic constituents in Rosa canina L. and its protective effect in cells. Biomedical Chromatography, 34 (12), e4961.
  • Ghendov-Mosanu, A., Cristea, E., Patras, A., Sturza, R. & Niculaua, M. (2020). Rosehips, a valuable source of antioxidants to improve gingerbread characteristics. Molecules, 25 (23), 5659.
  • Garavand, F., Jalai-Jivan, M., Assadpour, E., & Jafari, S. M. (2021). Encapsulation of phenolic compounds within nano/microemulsion systems: A review. Food Chemistry, 364, 130376.
  • Gibis, M., Vogt, E. & Weiss, J., (2012). Encapsulation of polyphenolic grape seed extract in polymer-coated liposomes. Food & Function, 3, 246–254.
  • Hedren, E., Mulokozi G. & Svanberg U. (2002). In vitro accessibility of carotenes from green leafy vegetables cooked with sunflower oil or red palm oil. International Journal of Food Science Nutrient, 53, 445–53.
  • Igual, M., García-Herrera, P., Cámara, R. M., Martínez-Monzó, J., García-Segovia, P., & Cámara, M. (2022). Bioactive Compounds in Rosehip (Rosa canina L.) Powder with Encapsulating Agents. Molecules, 27 (15), 4737.
  • Karatas, N. (2021). Fruit morphological and nutritional characteristics of different Rosa pimpinnellifolia L. genotypes. International Journal of Agriculture Forestry and Life Science, 5 (2): 184-188.
  • Kayahan, S., Ozdemir, Y., & Gulbag, F. (2022). Functional Compounds and Antioxidant Activity of Rosa Species Grown In Türkiye. Erwerbs-Obstbau, 1-8.
  • Kumaran, A. & Karunakaran, R. J. (2006). Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus, Food Chemistry, 97, 109–114.
  • Liaudanskas, M., Noreikienė, I., Zymonė, K., Juodytė, R., Žvikas, V. & Janulis, V. (2021). Composition and antioxidant activity of phenolic compounds in fruit of the genus Rosa L. Antioxidants, 10 (4), 545.
  • McDougall, G. J., Dobson, P., Smith, P., Blake, A. & Stewart, D. (2005). Assessing potential bioavailability of raspberry anthocyanins using an in vitro digestion system. Journal of Agricultural and Food Chemistry, 53 (15), 5896-5904.
  • Miller, N. J. & Rice Evans, C. (1997). Factor influencing the antioxidant activity determined by the ABTS• radical cation assay, Free Radical Research, 26, 594–594.
  • Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., ... & Brodkorb, A. (2014). A standardised static in vitro digestion method suitable for food–an international consensus. Food & Function, 5 (6), 1113-1124.
  • Nakamura, Y., Watanabe, S., Miyake, N., Kohno, H. & Osawa, T. (2003). Dihydrochalcones: evaluation as novel radical scavenging antioxidants, Journal agriculture food chemistry, 51, 3309–3312.
  • Oksuz, T., Tacer-Caba, Z., Nilufer-Erdil, D., & Boyacioglu, D. (2019). Changes in bioavailability of sour cherry (Prunus cerasus L.) phenolics and anthocyanins when consumed with dairy food matrices. Journal of Food Science and Technology, 56 (9), 4177-4188.
  • Oproshanska, T., Khvorost, O., Skrebtsova, K. & Vitkevicius K. (2021). Comparative pharmakognostical study of roots of Rosa majalis Herrm. and Rosa canina L. Science Rise: Pharmaceutical Science, 5 (33), 71–78.
  • Ozdogan, N. & Coruh, N. (2014). Identification of phenolic components of Rosa heckeliana Tratt roots. In FEBS Journal, 111 Rıver St, Hoboken 07030- 5774, Nj Usa: Wıley-Blackwell, 281, 427-427.
  • Ozkan, G., Stübler, A. S., Aganovic, K., Draeger, G., Esatbeyoglu, T., & Capanoglu, E. (2022). A comparative study on physicochemical properties and in vitro bioaccessibility of bioactive compounds in rosehip (Rosa canina L.) infusions treated by non‐thermal and thermal treatments. Journal of Food Processing and Preservation, 46 (6), e16096.
  • Perk, A.A., Ceylan, F.D., Yanar, O., Boztas, K. & Capanoğlu, E. (2016). Investigating the antioxidant properties and rutin content of Sea buckthorn (Hippophae rhamnoides L.) leaves and branches, African Journal of Biotechnology, 15 (5), 118-124.
  • Rain, S., Handoko, M. L., Trip, P., Gan, C. T. J., Westerhof, N., Stienen, G. J. ... & de Man, F. S. (2013). Right ventricular diastolic impairment in patients with pulmonary arterial hypertension. Circulation, 128 (18), 2016-2025.
  • Rovná, K., Ivanišová, E., Žiarovská, J., Ferus, P., Terentjeva, M., Kowalczewski, P. Ł., & Kačániová, M. (2020). Characterization of Rosa canina fruits collected in urban areas of Slovakia. Genome size, iPBS profiles and antioxidant and antimicrobial activities. Molecules, 25 (8), 1888.
  • Sallustio, V., Chiocchio, I., Mandrone, M., Cirrincione, M., Protti, M., Farruggia, G., ... & Cerchiara, T. (2022). Extraction, Encapsulation into Lipid Vesicular Systems, and Biological Activity of Rosa canina L. Bioactive Compounds for Dermocosmetic Use. Molecules, 27 (9), 3025.
  • Sevket, A. L. P., Ercisli, S., Jurikova, T., Cakir, O., & Gozlekci, S. (2016). Bioactive content of rose hips of different wildly grown Rosa dumalis genotypes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44 (2), 472-476.
  • Sies, H., P. Murphy, M.E. & Mascio D. (1991). Antioxidan defense system: the role of carotenoids, tocopherols, and thiols. The American Journal of Clinical Nutrition, 53, 194-200.
  • Tapiero, H., Tew, K.D., Ba, G.N. & Mathé, G. (2002). Polyphenols: Do they play a role in the prevention of human pathologies. Biomedicine and Pharmacotherapy, 56, 200-207.
  • Toktas, B., Bildik, F. & Ozcelik, B. (2018). Effect of fermentation on anthocyanin stability and in vitro bioaccessibility during shalgam (şalgam) beverage production. Journal of the Science of Food and Agriculture, 98 (8), 3066-3075.
  • Turkmen, N., Sarı, F. & Velioglu, S. (2006). Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin–Ciocalteu methods, Food Chemistry, 99, 835-841.
  • Yıldız, U. & Celik F. (2011). Muradiye (Van) Yöresinde doğal olarak yetişen kuşburnu (Rosa Spp.) genetik kaynaklarının bazı fiziko-kimyasal özellikleri, Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 16 (2), 45-53.

Investigating the Content and Bioaccessibility of Phenolic Compounds In Roots of Rosa canina L. and Rosa pimpinellifolia L.

Yıl 2023, , 163 - 173, 30.06.2023
https://doi.org/10.29133/yyutbd.1231881

Öz

Rosehip is among the most important plants with high economic value, mainly used in foods and beverages from ancient times to the present. In this study, Rosa canina L. and Rosa pimpinellifolia L. roots, consumed as tea in Aktoprak Village of Erzurum province, were collected together with the fruits. The main goal of the study was to investigate the in vitro bioaccessibility of phenolic compounds in the roots and fruits of R. canina and R. pimpinellifolia by a simulated gastrointestinal digestion procedure. Methanolic and aqueous extracts were prepared for the analysis of phenolic compounds in roots, whereas only methanolic extracts were used for the analyses of fruits. Total phenolic and total flavonoid contents were evaluated spectrophotometrically, while four different methods were used for antioxidant capacity measurements. The quantification of individual phenolic acids, flavonoids, and anthocyanins was performed with HPLC-PDA. Results demonstrated that R. canina and R. pimpinellifolia have high levels of total phenolics, total flavonoids, and antioxidant capacity. The roots of R. pimpinellifolia and R. canina were observed to contain higher amounts of phenolics compared to the fruits. Epicatechin, 4-hydroxybenzoic acid, gallic acid, syringic acid, p-coumaric acid, naringenin, and ellagic acid were not determined in the fruit extracts of R. pimpinellifolia and R. canina, while they were detected in aqueous extracts of roots. Bioaccessibility analyses carried out on aqueous root extracts showed total phenolic recovery was 12.73% in R. canina, 10.71% in R. pimpinellifolia, and total flavonoid recovery was 0% in both species.

Proje Numarası

55858

Kaynakça

  • Apak, R., Guclu, K., Ozyurek, M. & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agriculture Food Chemistry, 52, 7970–7981.
  • Ayati, Z., Amiri, M.S., Ramezani, M., Delshad, E., Sahebkar, A., Emami, S.A. (2019). Phytochemistry, Traditional Uses and Pharmacological Profile of Rose Hip: A Review. Curr. Pharm. Des, 24, 4101–4124.
  • Benito, P. & Miller, D. (1998). Iron absorption and bioavailability: anupdated review. Nutrition Research, 18, 581–603.
  • Benzie, I.F. & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analysis Biochemistry, 239, 70–76.
  • Bhuyan, D.J. & Basu, A. (2017). Utilisation of bioactive compounds derived from waste in the food industry. In Utilisation of Bioactive Compounds from Agricultural and Food Production Waste; Vuong, Q.V., Ed.; CRC Press: Boca Ratón, FL, USA, 342–357.
  • Cakir, O. & Ergen, B. (2021). Assessment of Wild R. pimpinellifolia L. According to Mineral Content and Bioactive Compounds. European Journal of Science and Technology, 25, 644-649.
  • Capanoglu, E., Beekwilder, J., Boyacioglu, D., Hall, R. & De Vos, R. (2008). Changes in antioxidant and metabolite profiles during production of tomato paste, Journal of Agriculture Food Chemistry, 56, 964-973.
  • Cosme, P., Rodríguez, A. B., Espino, J. & Garrido, M. (2020). Plant phenolics: Bioavailability as a key determinant of their potential health promoting applications. Antioxidants, 9 (12), 1263.
  • Dewanto, V., Wu, X.Z., Adom, K.K. & Liu, R.H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity, Journal of Agriculture Food Chemistry, 50, 3010–3014.
  • Dogan, A. & Kazankaya, A. (2006). Fruit properties of rose hip species grown in lake Van basin (eastern Anatolia region), Asian Journal Plant Science, 5 (1),120-2.
  • Fernàndez-Garcìa, E., Carvajal-Lérida, I. & Pérez Gàlvez, A. (2009). In vitro bioaccessibility assessment as a prediction tool ofnutritional efficiency. Nutrition Research, 29, 751–60.
  • Fetni, S., Bertella, N. & Ouahab, A. (2020). LC– DAD/ESI–MS/MS characterization of phenolic constituents in Rosa canina L. and its protective effect in cells. Biomedical Chromatography, 34 (12), e4961.
  • Ghendov-Mosanu, A., Cristea, E., Patras, A., Sturza, R. & Niculaua, M. (2020). Rosehips, a valuable source of antioxidants to improve gingerbread characteristics. Molecules, 25 (23), 5659.
  • Garavand, F., Jalai-Jivan, M., Assadpour, E., & Jafari, S. M. (2021). Encapsulation of phenolic compounds within nano/microemulsion systems: A review. Food Chemistry, 364, 130376.
  • Gibis, M., Vogt, E. & Weiss, J., (2012). Encapsulation of polyphenolic grape seed extract in polymer-coated liposomes. Food & Function, 3, 246–254.
  • Hedren, E., Mulokozi G. & Svanberg U. (2002). In vitro accessibility of carotenes from green leafy vegetables cooked with sunflower oil or red palm oil. International Journal of Food Science Nutrient, 53, 445–53.
  • Igual, M., García-Herrera, P., Cámara, R. M., Martínez-Monzó, J., García-Segovia, P., & Cámara, M. (2022). Bioactive Compounds in Rosehip (Rosa canina L.) Powder with Encapsulating Agents. Molecules, 27 (15), 4737.
  • Karatas, N. (2021). Fruit morphological and nutritional characteristics of different Rosa pimpinnellifolia L. genotypes. International Journal of Agriculture Forestry and Life Science, 5 (2): 184-188.
  • Kayahan, S., Ozdemir, Y., & Gulbag, F. (2022). Functional Compounds and Antioxidant Activity of Rosa Species Grown In Türkiye. Erwerbs-Obstbau, 1-8.
  • Kumaran, A. & Karunakaran, R. J. (2006). Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus, Food Chemistry, 97, 109–114.
  • Liaudanskas, M., Noreikienė, I., Zymonė, K., Juodytė, R., Žvikas, V. & Janulis, V. (2021). Composition and antioxidant activity of phenolic compounds in fruit of the genus Rosa L. Antioxidants, 10 (4), 545.
  • McDougall, G. J., Dobson, P., Smith, P., Blake, A. & Stewart, D. (2005). Assessing potential bioavailability of raspberry anthocyanins using an in vitro digestion system. Journal of Agricultural and Food Chemistry, 53 (15), 5896-5904.
  • Miller, N. J. & Rice Evans, C. (1997). Factor influencing the antioxidant activity determined by the ABTS• radical cation assay, Free Radical Research, 26, 594–594.
  • Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., ... & Brodkorb, A. (2014). A standardised static in vitro digestion method suitable for food–an international consensus. Food & Function, 5 (6), 1113-1124.
  • Nakamura, Y., Watanabe, S., Miyake, N., Kohno, H. & Osawa, T. (2003). Dihydrochalcones: evaluation as novel radical scavenging antioxidants, Journal agriculture food chemistry, 51, 3309–3312.
  • Oksuz, T., Tacer-Caba, Z., Nilufer-Erdil, D., & Boyacioglu, D. (2019). Changes in bioavailability of sour cherry (Prunus cerasus L.) phenolics and anthocyanins when consumed with dairy food matrices. Journal of Food Science and Technology, 56 (9), 4177-4188.
  • Oproshanska, T., Khvorost, O., Skrebtsova, K. & Vitkevicius K. (2021). Comparative pharmakognostical study of roots of Rosa majalis Herrm. and Rosa canina L. Science Rise: Pharmaceutical Science, 5 (33), 71–78.
  • Ozdogan, N. & Coruh, N. (2014). Identification of phenolic components of Rosa heckeliana Tratt roots. In FEBS Journal, 111 Rıver St, Hoboken 07030- 5774, Nj Usa: Wıley-Blackwell, 281, 427-427.
  • Ozkan, G., Stübler, A. S., Aganovic, K., Draeger, G., Esatbeyoglu, T., & Capanoglu, E. (2022). A comparative study on physicochemical properties and in vitro bioaccessibility of bioactive compounds in rosehip (Rosa canina L.) infusions treated by non‐thermal and thermal treatments. Journal of Food Processing and Preservation, 46 (6), e16096.
  • Perk, A.A., Ceylan, F.D., Yanar, O., Boztas, K. & Capanoğlu, E. (2016). Investigating the antioxidant properties and rutin content of Sea buckthorn (Hippophae rhamnoides L.) leaves and branches, African Journal of Biotechnology, 15 (5), 118-124.
  • Rain, S., Handoko, M. L., Trip, P., Gan, C. T. J., Westerhof, N., Stienen, G. J. ... & de Man, F. S. (2013). Right ventricular diastolic impairment in patients with pulmonary arterial hypertension. Circulation, 128 (18), 2016-2025.
  • Rovná, K., Ivanišová, E., Žiarovská, J., Ferus, P., Terentjeva, M., Kowalczewski, P. Ł., & Kačániová, M. (2020). Characterization of Rosa canina fruits collected in urban areas of Slovakia. Genome size, iPBS profiles and antioxidant and antimicrobial activities. Molecules, 25 (8), 1888.
  • Sallustio, V., Chiocchio, I., Mandrone, M., Cirrincione, M., Protti, M., Farruggia, G., ... & Cerchiara, T. (2022). Extraction, Encapsulation into Lipid Vesicular Systems, and Biological Activity of Rosa canina L. Bioactive Compounds for Dermocosmetic Use. Molecules, 27 (9), 3025.
  • Sevket, A. L. P., Ercisli, S., Jurikova, T., Cakir, O., & Gozlekci, S. (2016). Bioactive content of rose hips of different wildly grown Rosa dumalis genotypes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44 (2), 472-476.
  • Sies, H., P. Murphy, M.E. & Mascio D. (1991). Antioxidan defense system: the role of carotenoids, tocopherols, and thiols. The American Journal of Clinical Nutrition, 53, 194-200.
  • Tapiero, H., Tew, K.D., Ba, G.N. & Mathé, G. (2002). Polyphenols: Do they play a role in the prevention of human pathologies. Biomedicine and Pharmacotherapy, 56, 200-207.
  • Toktas, B., Bildik, F. & Ozcelik, B. (2018). Effect of fermentation on anthocyanin stability and in vitro bioaccessibility during shalgam (şalgam) beverage production. Journal of the Science of Food and Agriculture, 98 (8), 3066-3075.
  • Turkmen, N., Sarı, F. & Velioglu, S. (2006). Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin–Ciocalteu methods, Food Chemistry, 99, 835-841.
  • Yıldız, U. & Celik F. (2011). Muradiye (Van) Yöresinde doğal olarak yetişen kuşburnu (Rosa Spp.) genetik kaynaklarının bazı fiziko-kimyasal özellikleri, Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 16 (2), 45-53.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Bilimi
Bölüm Makaleler
Yazarlar

Merve Macit 0000-0001-9648-4799

Aliye Aras 0000-0002-2188-4031

Esra Çapanoğlu Güven 0000-0003-0335-9433

Sena Bakır 0000-0002-6258-1969

Proje Numarası 55858
Erken Görünüm Tarihi 15 Haziran 2023
Yayımlanma Tarihi 30 Haziran 2023
Kabul Tarihi 28 Mart 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Macit, M., Aras, A., Çapanoğlu Güven, E., Bakır, S. (2023). Investigating the Content and Bioaccessibility of Phenolic Compounds In Roots of Rosa canina L. and Rosa pimpinellifolia L. Yuzuncu Yıl University Journal of Agricultural Sciences, 33(2), 163-173. https://doi.org/10.29133/yyutbd.1231881

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.