Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Heavy Metal Concentrations and Accumulation Capacities of Naturally Growing Species in Old Garbage Area

Yıl 2024, , 151 - 165, 31.03.2024
https://doi.org/10.29133/yyutbd.1399025

Öz

In underdeveloped and/or developing countries, garbage is often randomly piled up in open areas. This method has been used to dispose of garbage/solid waste in Turkey for many years. Although pollution is not at the forefront in Bingöl province, the area located in the city center of the city has been used as a wild garbage storage area for approximately 18 years. Since the garbage in the area poses a danger to people and the environment, this area has become inactive with the establishment of a new solid waste disposal facility in the city. There are plants that have adapted to this area, which has been empty for about ten years. In this study, it was tried to determine in what proportions and organs the plant species distributed in the area accumulate heavy metals that may have come from garbage leachate. Plants identified in the field; Alyssum simplex, Cirsium libanoticum, Descurainia sophia, Fumaria asepala, Fumaria officinalis, Matricaria chamomilla, Papaver dubium, Scrophularia canina, Trifolium repens and Ziziphora capitata species. Fe, Cr, As, Cd and Pb concentrations (mg kg-1) of these species were measured in root, stem, leaf and flower organs and translocation factors (TF) were calculated for these species. In conclusion; Alyssum simplex, Cirsium libanoticum and Fumaria asepala for Fe, Cirsium libanoticum, Fumaria asepala, Fumaria officinalis and Matricaria chamomilla Cr and As, Cirsium libanoticum, Papaver dubium and Scrophularia canina for Cd and all other species except Alyssum simplex and Scrophularia canina for Pb translocation factors (TF) were found to be greater than 1 (TF>1). The accumulation potential of these species is thought to be promising so that they can be evaluated in phytoremediation.

Kaynakça

  • Agbeshie, A. A., Adjei, R., Anokye, J., & Banunle, A. (2020). Municipal waste dumpsite: Impact on soil properties and heavy metal concentrations, Sunyani, Ghana. Scientific African, 8, e00390.
  • Alinia-Ahandani, E., Malekirad, A. A., Nazem, H., Fazilati, M., Salavati, H., & Rezaei, M. (2021). Assessment of Some Toxıc Metals in Ziziphora (Ziziphora persica) obtained from local market in Lahijan, Northern Iran. Annals of Military and Health Sciences Research, 19(4), e119991.
  • Alizadeh, A., Ghorbani, J., Motamedi, J., Vahabzadeh, G., Edraki, M., & van Der Ent, A. (2022). Metal and metalloid accumulation in native plants around a copper mine site: implications for phytostabilization. International Journal of Phytoremediation, 24(11), 1141-1151.
  • Anonymous, (2013a). https://dogruhaber.com.tr/haber/83514-bingol-sehir-coplugu-tehlike-saciyor/, Access date: 03.07.2022.
  • Anonymous, (2013b). https://www.haberler.com/yerel/bingolde-kati-atik-bertaraf-tesisi-faaliyete-gecti-5038907-haberi/, Access date: 21.06.2022.
  • Awokunmi, E. E., Asaolu, S. S., & Ipinmoroti, K. O. (2010). Effect of leaching on heavy metals concentration of soil in some dumpsites. African Journal of Environmental Science and Technology, 4(8), 495-499.
  • Boularbah, A., Schwartz, C., Bitton, G., Aboudrar, W., Ouhammou, A., & Morel, J. L. (2006). Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants. Chemosphere, 63(5), 811-817.
  • Boysan Canal, S., Bozkurt, M., & Yilmaz, H. (2022). The effect of humic acid on plant growth, phytoremediation and oxidative stress in rapeseed (Brassica napus L.) grown under heavy metal stress. Yuzuncu Yil University Journal of Agricultural Sciences, 32(2), 237-248.
  • Campbell, C. R., & Plank, C. O. (1998). Preparation of plant tissue for laboratory analysis, Y. Kalra (Ed.), Reference Methods for Plant Analysis ( 37).
  • Chanu, L. B., & Gupta, A. (2016). Phytoremediation of lead using Ipomoea aquatica Forsk. in hydroponic solution. Chemosphere, 156, 407-411.
  • Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88(11), 1707-1719.
  • Celiktas, V. (2020). The determination of the phytoremediation characteristics of plants which found in chromium mining areas in Aladağ district of Adana province. (Master's thesis, Çukurova University).
  • Davis, P. H. (1965-1985). Flora of Turkey and the East Aegean Islands. Vol. 1-9. Edinburgh University Press., Edinburgh.
  • Davis, P. H., R. R. Mill and K. Tan. (1988). Flora of Turkey and the East Aegean Islands. Vol. 10. Supplement I. Edinburgh University Press., Edinburgh.
  • Dokmeci, A. H., & Adiloglu, S. (2020). The Phytoremediation of chromium from soil using Cirsium vulgare and the health effects. Biosciences Biotechnology Research Asia, 17(3), 535-541.
  • Doku, E. T., Sylverken, A. A., & Belford, J. E. (2024). Rhizosphere microbiome of plants used in phytoremediation of mine tailing dams. International Journal of Phytoremediation, 1-9. doi: 10.1080/15226514.2024.2301994.
  • Ebin, G. C. (2004). Katı atık depo sahalarının rehabilitasyonu. Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • FAO/ITPS, (2015). Status of the world’s soil resources (SWSR)–main report, in: Food and agriculture organization of the United Nations and intergovernmental technical panel on soils, Rome, Italy, 2015, p. 650. https://www.fao.org/3/i5199e/I5199E.pdf, Access date:18.06.2022.
  • Ghaderian, S. M., & Ravandi, A. A. G. (2012). Accumulation of copper and other heavy metals by plants growing on Sarcheshmeh copper mining area, Iran. Journal of Geochemical Exploration, 123, 25-32.
  • Glišić, R., Simić, Z., Grbović, F., Rajičić, V., & Branković, S. (2021). Phytoaccumulation of metals in three plants species of the Asteraceae family sampled along a highway.
  • Gokce, G., & Hasanoglu, P. (2015). Plantation and Rehabilitation of Solid Waste Storage Areas and Open Dump Areas. Düzce University Journal of Science and Technology, 3(1), 258-271.
  • GSP, (2017). Report of the Fifth Meeting of the Plenary Assembly (PA) of the Global Soil Partnership (GSP), Food and Agriculture Organization of the United Nations, Rome, Italy,. https://www.fao.org/3/bs973e/bs973e.pdf, Access date:18.06.2022.
  • Guner, A., Aslan, S., Ekim, T., Vural, M. & Babac, M.T. (edlr.). (2012). List of Plants of Türkiye (Vascular Plants). Nezahat Gökyiğit Garden and Flora Research Association Publication. Istanbul.
  • Guner, A.,Ozhatay N., Ekim T., Bafler K. H. C. (2000). Flora of Turkey and the East Aegean Islands, Second Supplement. Vol. 11. P. 656. Edinburgh: Edinburgh University Press.
  • Gurbuz, M. A., Kardes, T. A., & Cebi U. (2016). Assessment of the Availability of the Multinutrient Extraction Methods for Wheat Plant for the Determining Phosphorus by Soil and Plant Analysis, Çukurova Journal of Agricultural and Food Sciences, 31(3), 229-233.
  • Hajihashemi, S., Rajabpoor, S., & Brestic, M. (2021). Introduction to the native plant species with phytoremediation potential growing in a high Fe and Zn contaminated site in the copper mine of Dehmadan, Iran. 09 November 2021, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-1058712/v1].
  • Holleman, A. F. E. (1985). Sayfa 868. Wiberg: Lehebuch du Anoranischen chemie. Water de Gruyter, Berlin.
  • JMP, (2018). Statistical Discovery from SAS, USA.
  • Kabata-Pendias A. (1994). Maintaining soil micronutrient status In: Soil Resilience and Sustainable Land use, eds. D.J. Greenland, I. Szabolcs, 199–214, CAB Int., Wallington.
  • Kabata-Pendias, A. (2011). 4th edn CRC Press, Trace elements in soils and plants. Boca Raton.
  • Kacar, B., Inal, A. 2008. Page 892, Plant analysis, Nobel Publication No: 1241.
  • Kalay, M., Canlı, M. (2000). Elimination of essential (Cu, Zn) and non-essential (Cd, Pb) metals from tissues of a freshwater fish Tilapia zilli. Turkish Journal of Zoology, 24(4), 429-436.
  • Kováčik, J., Tomko, J., Bačkor, M., & Repčák, M. (2006). Matricaria chamomilla is not a hyperaccumulator, but tolerant to cadmium stress. Plant Growth Regulation, 50, 239-247.
  • Kuzu, M., Comaklı, V., Akkemik, E., Ciftci, M., & Kufrevioglu, Ö. İ. (2018). Inhibitory properties of some heavy metals on carbonic anhydrase I and II isozymes activities purified from Van Lake fish (Chalcalburnus Tarichi) gill. Fish physiology and biochemistry, 44, 1119-1125.
  • Lagerkvist, A., & Dahlén, L. (2019). Solid Waste Generation and Characterization, in: Recovery of Materials and Energy from Urban Wastes: A Volume in the Encyclopedia of Sustainability Science and Technology, Second ed., pp. 7–20.
  • Matanzas, N., Afif, E., Díaz, T. E., & Gallego, J. R. (2021). Phytoremediation potential of native herbaceous plant species growing on a paradigmatic brownfield site. Water, Air, & Soil Pollution, 232, 1-14.
  • Moameri, M., Jafari, M., Tavili, A., Motasharezadeh, B., & Zare Chahouki, M. A. (2017). Rangeland plants potential for phytoremediation of contaminated soils with lead, zinc, cadmium and nickel (Case study: Rangelands around national lead & zinc factory, Zanjan, Iran). Journal of Rangeland Science, 7(2), 160-171.
  • Naila, A., Meerdink, G., Jayasena, V., Sulaiman, A. Z., Ajit, A. B., & Berta, G. (2019). A review on global metal accumulators Mechanism, enhancement, commercial application, and research trend, Environmental Science and Pollution Research, 26(26), 26449-26471.
  • Nouri, J., Khorasani, N., Lorestani, B., Karami, M., Hassani, A. H., & Yousefi, N. (2009). Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environmental Earth Sciences, 59, 315-323.
  • Oksuz, C. (2019). Determination of heavy metal concentration of soil and vegetation the city waste of Kastamonu (Master's thesis, Kastamonu University).
  • Ozay, C., & Mammadov, R. (2013). Heavy Metals and Potential Availability of Ornamental Plants for Phytoremediation. Journal of Balıkesir University Institute of Science and Technology, 15(1), 68-77. Retrieved from https://dergipark.org.tr/en/pub/baunfbed/issue/24792/261934
  • Ozbek, K. (2015). Hyperaccumulation and hyperaccumulator species in the flora of Turkey. Soil Science and Journal of Plant Nutrition, 3(1), 37-43.
  • Sajad, M. A., Khan, M. S., & Ali, H. (2019). 42. Lead phytoremediation potential of sixty-one plant species: an open field survey. Pure and Applied Biology (PAB), 8(1), 405-419.
  • Sajad, M. A., Khan, M. S., Bahadur, S., Naeem, A., Ali, H., Batool, F., ... & Batool, S. (2020). Evaluation of chromium phytoremediation potential of some plant species of Dir Lower, Khyber Pakhtunkhwa, Pakistan. Acta Ecologica Sinica, 40(2), 158-165.
  • Saleem, M. H., Ali, S., Rehman, M., Hasanuzzaman, M., Rizwan, M., Irshad, S., ... & Qari, S. H. (2020a). Jute: A potential candidate for phytoremediation of metals A review. Plants, 9(2), 258.
  • Saleem, M. H., Fahad, S., Rehman, M., Saud, S., Jamal, Y., Khan, S., & Liu, L. (2020b). Morpho-physiological traits, biochemical response and phytoextraction potential of short-term copper stress on kenaf (Hibiscus cannabinus L.) seedlings. PeerJ, 8, e8321.
  • Shallari, S., Schwartz, C., Hasko, A., & Morel, J. L. (1998). Heavy metals in soils and plants of serpentine and industrial sites of Albania. Science of The Total Environment, 209(2-3), 133-142.
  • Sharma, R. K., & Agrawal, M. (2005). Biological effects of heavy metals: an overview. Journal of environmental Biology, 26(2), 301-313.
  • Sonmez, O., & Kılıc, F. N. (2021). Heavy metal pollution in soil and removal methods. Turkish Journal of Agricultural Engineering Research (TURKAGER), 2(2), 493-507.
  • Surmen, B., Kılıc, D. D., Kutbay, H. G., & Tuna, E. E. (2019). Investigation of Heavy Metal Accumulation and Biomonitoring of Lepidium draba L. Species Growing in Amasya (Turkey) Province. European Journal of Science and Technology, (17), 491-499.
  • Tas, R., & Demir, Y. (2022). Determination and mapping of fertility level and some heavy metal contents of agricultural soils in Bingöl plain. Düzce University Faculty of Forestry Journal of Forestry, 18(2), 296-315.
  • TUIK, (2020). Atık İstatistikleri. https://data.tuik.gov.tr/, Access date: 25.06.2022.
  • UNEP, (2018). World commits to pollution-free planet at environment summit., UN Environment, [online]. https://wedocs.unep.org/bitstream/handle/20.500.11822/25435/AnnualReport2018_En.pdf?sequence=1&isAllowed=y, Access date: 18.06.2022.
  • Wan, X., Zeng, W., Cai, W., Lei, M., Liao, X., & Chen, T. (2023). Progress and future prospects in co-planting with hyperaccumulators: Application to the sustainable use of agricultural soil contaminated by arsenic, cadmium, and nickel. Critical Reviews in Environmental Science and Technology, 53(24), 2112–2131.
  • Wen, W., Zhao, H., Ma, J., Li, Z., Li, H., Zhu, X., ... & Liu, Y. (2018). Effects of mutual intercropping on Pb and Zn accumulation of accumulator plants Rumex nepalensis, Lolium perenne and Trifolium repens. Chemistry and Ecology, 34(3), 259-271.
  • WHO/FAO, (2007). Joint FAO/WHO Food Standard Programme Codex Alimentarius Commission 13th Session. Report of the Thirty-Eight Session of the Codex Committee on Food Hygiene, Houston, United States of.
  • Zokaei, M., Sepehri, M., Zarei, A., & Jafari, F. (2018). Determination of the concentration of heavy metals in medicinal plants and assessment of the risk to health. Amazonia Investiga, 7(16), 335-343.
Yıl 2024, , 151 - 165, 31.03.2024
https://doi.org/10.29133/yyutbd.1399025

Öz

Kaynakça

  • Agbeshie, A. A., Adjei, R., Anokye, J., & Banunle, A. (2020). Municipal waste dumpsite: Impact on soil properties and heavy metal concentrations, Sunyani, Ghana. Scientific African, 8, e00390.
  • Alinia-Ahandani, E., Malekirad, A. A., Nazem, H., Fazilati, M., Salavati, H., & Rezaei, M. (2021). Assessment of Some Toxıc Metals in Ziziphora (Ziziphora persica) obtained from local market in Lahijan, Northern Iran. Annals of Military and Health Sciences Research, 19(4), e119991.
  • Alizadeh, A., Ghorbani, J., Motamedi, J., Vahabzadeh, G., Edraki, M., & van Der Ent, A. (2022). Metal and metalloid accumulation in native plants around a copper mine site: implications for phytostabilization. International Journal of Phytoremediation, 24(11), 1141-1151.
  • Anonymous, (2013a). https://dogruhaber.com.tr/haber/83514-bingol-sehir-coplugu-tehlike-saciyor/, Access date: 03.07.2022.
  • Anonymous, (2013b). https://www.haberler.com/yerel/bingolde-kati-atik-bertaraf-tesisi-faaliyete-gecti-5038907-haberi/, Access date: 21.06.2022.
  • Awokunmi, E. E., Asaolu, S. S., & Ipinmoroti, K. O. (2010). Effect of leaching on heavy metals concentration of soil in some dumpsites. African Journal of Environmental Science and Technology, 4(8), 495-499.
  • Boularbah, A., Schwartz, C., Bitton, G., Aboudrar, W., Ouhammou, A., & Morel, J. L. (2006). Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants. Chemosphere, 63(5), 811-817.
  • Boysan Canal, S., Bozkurt, M., & Yilmaz, H. (2022). The effect of humic acid on plant growth, phytoremediation and oxidative stress in rapeseed (Brassica napus L.) grown under heavy metal stress. Yuzuncu Yil University Journal of Agricultural Sciences, 32(2), 237-248.
  • Campbell, C. R., & Plank, C. O. (1998). Preparation of plant tissue for laboratory analysis, Y. Kalra (Ed.), Reference Methods for Plant Analysis ( 37).
  • Chanu, L. B., & Gupta, A. (2016). Phytoremediation of lead using Ipomoea aquatica Forsk. in hydroponic solution. Chemosphere, 156, 407-411.
  • Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88(11), 1707-1719.
  • Celiktas, V. (2020). The determination of the phytoremediation characteristics of plants which found in chromium mining areas in Aladağ district of Adana province. (Master's thesis, Çukurova University).
  • Davis, P. H. (1965-1985). Flora of Turkey and the East Aegean Islands. Vol. 1-9. Edinburgh University Press., Edinburgh.
  • Davis, P. H., R. R. Mill and K. Tan. (1988). Flora of Turkey and the East Aegean Islands. Vol. 10. Supplement I. Edinburgh University Press., Edinburgh.
  • Dokmeci, A. H., & Adiloglu, S. (2020). The Phytoremediation of chromium from soil using Cirsium vulgare and the health effects. Biosciences Biotechnology Research Asia, 17(3), 535-541.
  • Doku, E. T., Sylverken, A. A., & Belford, J. E. (2024). Rhizosphere microbiome of plants used in phytoremediation of mine tailing dams. International Journal of Phytoremediation, 1-9. doi: 10.1080/15226514.2024.2301994.
  • Ebin, G. C. (2004). Katı atık depo sahalarının rehabilitasyonu. Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • FAO/ITPS, (2015). Status of the world’s soil resources (SWSR)–main report, in: Food and agriculture organization of the United Nations and intergovernmental technical panel on soils, Rome, Italy, 2015, p. 650. https://www.fao.org/3/i5199e/I5199E.pdf, Access date:18.06.2022.
  • Ghaderian, S. M., & Ravandi, A. A. G. (2012). Accumulation of copper and other heavy metals by plants growing on Sarcheshmeh copper mining area, Iran. Journal of Geochemical Exploration, 123, 25-32.
  • Glišić, R., Simić, Z., Grbović, F., Rajičić, V., & Branković, S. (2021). Phytoaccumulation of metals in three plants species of the Asteraceae family sampled along a highway.
  • Gokce, G., & Hasanoglu, P. (2015). Plantation and Rehabilitation of Solid Waste Storage Areas and Open Dump Areas. Düzce University Journal of Science and Technology, 3(1), 258-271.
  • GSP, (2017). Report of the Fifth Meeting of the Plenary Assembly (PA) of the Global Soil Partnership (GSP), Food and Agriculture Organization of the United Nations, Rome, Italy,. https://www.fao.org/3/bs973e/bs973e.pdf, Access date:18.06.2022.
  • Guner, A., Aslan, S., Ekim, T., Vural, M. & Babac, M.T. (edlr.). (2012). List of Plants of Türkiye (Vascular Plants). Nezahat Gökyiğit Garden and Flora Research Association Publication. Istanbul.
  • Guner, A.,Ozhatay N., Ekim T., Bafler K. H. C. (2000). Flora of Turkey and the East Aegean Islands, Second Supplement. Vol. 11. P. 656. Edinburgh: Edinburgh University Press.
  • Gurbuz, M. A., Kardes, T. A., & Cebi U. (2016). Assessment of the Availability of the Multinutrient Extraction Methods for Wheat Plant for the Determining Phosphorus by Soil and Plant Analysis, Çukurova Journal of Agricultural and Food Sciences, 31(3), 229-233.
  • Hajihashemi, S., Rajabpoor, S., & Brestic, M. (2021). Introduction to the native plant species with phytoremediation potential growing in a high Fe and Zn contaminated site in the copper mine of Dehmadan, Iran. 09 November 2021, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-1058712/v1].
  • Holleman, A. F. E. (1985). Sayfa 868. Wiberg: Lehebuch du Anoranischen chemie. Water de Gruyter, Berlin.
  • JMP, (2018). Statistical Discovery from SAS, USA.
  • Kabata-Pendias A. (1994). Maintaining soil micronutrient status In: Soil Resilience and Sustainable Land use, eds. D.J. Greenland, I. Szabolcs, 199–214, CAB Int., Wallington.
  • Kabata-Pendias, A. (2011). 4th edn CRC Press, Trace elements in soils and plants. Boca Raton.
  • Kacar, B., Inal, A. 2008. Page 892, Plant analysis, Nobel Publication No: 1241.
  • Kalay, M., Canlı, M. (2000). Elimination of essential (Cu, Zn) and non-essential (Cd, Pb) metals from tissues of a freshwater fish Tilapia zilli. Turkish Journal of Zoology, 24(4), 429-436.
  • Kováčik, J., Tomko, J., Bačkor, M., & Repčák, M. (2006). Matricaria chamomilla is not a hyperaccumulator, but tolerant to cadmium stress. Plant Growth Regulation, 50, 239-247.
  • Kuzu, M., Comaklı, V., Akkemik, E., Ciftci, M., & Kufrevioglu, Ö. İ. (2018). Inhibitory properties of some heavy metals on carbonic anhydrase I and II isozymes activities purified from Van Lake fish (Chalcalburnus Tarichi) gill. Fish physiology and biochemistry, 44, 1119-1125.
  • Lagerkvist, A., & Dahlén, L. (2019). Solid Waste Generation and Characterization, in: Recovery of Materials and Energy from Urban Wastes: A Volume in the Encyclopedia of Sustainability Science and Technology, Second ed., pp. 7–20.
  • Matanzas, N., Afif, E., Díaz, T. E., & Gallego, J. R. (2021). Phytoremediation potential of native herbaceous plant species growing on a paradigmatic brownfield site. Water, Air, & Soil Pollution, 232, 1-14.
  • Moameri, M., Jafari, M., Tavili, A., Motasharezadeh, B., & Zare Chahouki, M. A. (2017). Rangeland plants potential for phytoremediation of contaminated soils with lead, zinc, cadmium and nickel (Case study: Rangelands around national lead & zinc factory, Zanjan, Iran). Journal of Rangeland Science, 7(2), 160-171.
  • Naila, A., Meerdink, G., Jayasena, V., Sulaiman, A. Z., Ajit, A. B., & Berta, G. (2019). A review on global metal accumulators Mechanism, enhancement, commercial application, and research trend, Environmental Science and Pollution Research, 26(26), 26449-26471.
  • Nouri, J., Khorasani, N., Lorestani, B., Karami, M., Hassani, A. H., & Yousefi, N. (2009). Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environmental Earth Sciences, 59, 315-323.
  • Oksuz, C. (2019). Determination of heavy metal concentration of soil and vegetation the city waste of Kastamonu (Master's thesis, Kastamonu University).
  • Ozay, C., & Mammadov, R. (2013). Heavy Metals and Potential Availability of Ornamental Plants for Phytoremediation. Journal of Balıkesir University Institute of Science and Technology, 15(1), 68-77. Retrieved from https://dergipark.org.tr/en/pub/baunfbed/issue/24792/261934
  • Ozbek, K. (2015). Hyperaccumulation and hyperaccumulator species in the flora of Turkey. Soil Science and Journal of Plant Nutrition, 3(1), 37-43.
  • Sajad, M. A., Khan, M. S., & Ali, H. (2019). 42. Lead phytoremediation potential of sixty-one plant species: an open field survey. Pure and Applied Biology (PAB), 8(1), 405-419.
  • Sajad, M. A., Khan, M. S., Bahadur, S., Naeem, A., Ali, H., Batool, F., ... & Batool, S. (2020). Evaluation of chromium phytoremediation potential of some plant species of Dir Lower, Khyber Pakhtunkhwa, Pakistan. Acta Ecologica Sinica, 40(2), 158-165.
  • Saleem, M. H., Ali, S., Rehman, M., Hasanuzzaman, M., Rizwan, M., Irshad, S., ... & Qari, S. H. (2020a). Jute: A potential candidate for phytoremediation of metals A review. Plants, 9(2), 258.
  • Saleem, M. H., Fahad, S., Rehman, M., Saud, S., Jamal, Y., Khan, S., & Liu, L. (2020b). Morpho-physiological traits, biochemical response and phytoextraction potential of short-term copper stress on kenaf (Hibiscus cannabinus L.) seedlings. PeerJ, 8, e8321.
  • Shallari, S., Schwartz, C., Hasko, A., & Morel, J. L. (1998). Heavy metals in soils and plants of serpentine and industrial sites of Albania. Science of The Total Environment, 209(2-3), 133-142.
  • Sharma, R. K., & Agrawal, M. (2005). Biological effects of heavy metals: an overview. Journal of environmental Biology, 26(2), 301-313.
  • Sonmez, O., & Kılıc, F. N. (2021). Heavy metal pollution in soil and removal methods. Turkish Journal of Agricultural Engineering Research (TURKAGER), 2(2), 493-507.
  • Surmen, B., Kılıc, D. D., Kutbay, H. G., & Tuna, E. E. (2019). Investigation of Heavy Metal Accumulation and Biomonitoring of Lepidium draba L. Species Growing in Amasya (Turkey) Province. European Journal of Science and Technology, (17), 491-499.
  • Tas, R., & Demir, Y. (2022). Determination and mapping of fertility level and some heavy metal contents of agricultural soils in Bingöl plain. Düzce University Faculty of Forestry Journal of Forestry, 18(2), 296-315.
  • TUIK, (2020). Atık İstatistikleri. https://data.tuik.gov.tr/, Access date: 25.06.2022.
  • UNEP, (2018). World commits to pollution-free planet at environment summit., UN Environment, [online]. https://wedocs.unep.org/bitstream/handle/20.500.11822/25435/AnnualReport2018_En.pdf?sequence=1&isAllowed=y, Access date: 18.06.2022.
  • Wan, X., Zeng, W., Cai, W., Lei, M., Liao, X., & Chen, T. (2023). Progress and future prospects in co-planting with hyperaccumulators: Application to the sustainable use of agricultural soil contaminated by arsenic, cadmium, and nickel. Critical Reviews in Environmental Science and Technology, 53(24), 2112–2131.
  • Wen, W., Zhao, H., Ma, J., Li, Z., Li, H., Zhu, X., ... & Liu, Y. (2018). Effects of mutual intercropping on Pb and Zn accumulation of accumulator plants Rumex nepalensis, Lolium perenne and Trifolium repens. Chemistry and Ecology, 34(3), 259-271.
  • WHO/FAO, (2007). Joint FAO/WHO Food Standard Programme Codex Alimentarius Commission 13th Session. Report of the Thirty-Eight Session of the Codex Committee on Food Hygiene, Houston, United States of.
  • Zokaei, M., Sepehri, M., Zarei, A., & Jafari, F. (2018). Determination of the concentration of heavy metals in medicinal plants and assessment of the risk to health. Amazonia Investiga, 7(16), 335-343.
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çayır-Mera ve Yem Bitkileri
Bölüm Makaleler
Yazarlar

Hava Şeyma İnci 0000-0002-2670-401X

Mihriban Ahıskalı 0000-0003-0580-7594

Merve Macit 0000-0001-9648-4799

Erdal Çaçan 0000-0002-9469-2495

Erken Görünüm Tarihi 25 Mart 2024
Yayımlanma Tarihi 31 Mart 2024
Gönderilme Tarihi 1 Aralık 2023
Kabul Tarihi 3 Şubat 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA İnci, H. Ş., Ahıskalı, M., Macit, M., Çaçan, E. (2024). Investigation of Heavy Metal Concentrations and Accumulation Capacities of Naturally Growing Species in Old Garbage Area. Yuzuncu Yıl University Journal of Agricultural Sciences, 34(1), 151-165. https://doi.org/10.29133/yyutbd.1399025

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.