Research Article
BibTex RIS Cite

Diversity and Distribution of Cyanobacteria in Camel Barn Soil in Libya

Year 2025, Volume: 35 Issue: 4, 679 - 692, 25.12.2025

Abstract

Libya features semi-arid lands that are predominantly pastoral, and its microbiological diversity remains largely unexplored. The objectives of the present study were to evaluate the distribution and diversity of cyanobacteria in the soil of camel barns and to determine how physical and chemical variables affect cyanobacteria species and the communities in three semi-arid areas east of Al-Qubbah city during May (summer) of 2024. In this work, 23 cyanobacterial species belonging to 14 genera, representing five common orders (Chroococcales, Oscillatoriales, Nostocales, Scytonematales, and Spirulinales), were identified using morphological features and the culture-dependent technique. Biodiversity indicators showed that camel barn sites are richer in cyanobacteria species than sites outside the barns; the first site had the highest species richness with (5.882±0.2 species/stand), Shannon index (2.89±0.42), and overall abundance (0.78±0.08). Four groups of cyanobacteria were identified using Pearson correlation, principal component analysis, and multivariate analysis; their presence was positively correlated with the quantity of organic matter, soil moisture, potassium, and nitrate content. Cyanobacteria and the amount of sand in the soil were shown to be strongly negatively correlated. Most sites were dominated by the orders Oscillatoriales and Nostocales. Woella saccata was documented (100/100) at every site under study. This work highlights the potential applications of animal waste as a new source for cultivating microorganisms in semi-arid regions.

References

  • Abdalla, I. A., Haroun, E. M., & Abdalla, H. O. (2018). Effects of type of nutrition on the chemical composition of camels milk and urine.‏ Gezira J. of Agric. Sci, 16(2), 11.
  • Abdulrraziq, A. A., & Salih, S. M. (2023). Cultivation of Spirulina platensis in human urine medium or/and fish liver oil medium (home design). Algerian Journal of Biosciences, 4(2), 102-108.‏ https://doi.org/10.57056/ajb.v4i02.143
  • Abdulrraziq, A. A., Salih, S. M., & Abdulrraziq, A. A. (2025). Assessment of antibacterial activity of Spirulina platensis cultivated on camel urine medium, in vitro. HPU2 Journal of Science: Natural Sciences and Technology, 4(2), 32-41.‏ https://doi.org/10.56764/hpu2.jos.2025.4.02.32-41
  • Akmukhanova, N. R., Seiilbek, S. N., Zayadan, B. K., Bolatkhan, K., Bakytzhan, R. A., Domash, G. S., & Bruce, B. D. (2025). Harnessing microalgae and cyanobacteria for sustainable pesticide biodegradation: Advances, challenges, and ecological benefits. Microorganisms, 13(10), 2404.‏ https://doi.org/10.3390/microorganisms13102404
  • Al-Sodany, Y. M., Issa, A. A., Kahil, A. A., & Ali, E. F. (2018). Diversity of soil cyanobacteria in relation to dominant wild plants and edaphic factors at Western Saudi Arabia. Annual Research & Review in Biology, 26(3), 1-14.‏ https://doi.org/10.9734/ARRB/2018/40492
  • Beretta, A. N., Silbermann, A. V., Paladino, L., Torres, D., Kassahun, D., Musselli, R., & Lamohte, A. G. (2014). Soil texture analyses using a hydrometer: modification of the Bouyoucos method. Ciencia e Investigación Agraria: Revista Latinoamericana de Ciencias de la Agricultura, 41(2), 263-271.‏ https://doi.org/10.4067/S0718-16202014000200013
  • Bishoyi, A. K., Sahoo, C. R., & Padhy, R. N. (2022). Recent progression of cyanobacteria and their pharmaceutical utility: An update. Journal of Biomolecular Structure and Dynamics, 41(9), 4219–4252. https://doi.org/10.1080/07391102.2022.2062051
  • Bouyahya, A., Bakrim, S., Chamkhi, I., Taha, D., El Omari, N., El Mneyiy, N., ... & Aanniz, T. (2024). Bioactive substances of cyanobacteria and microalgae: sources, metabolism, and anticancer mechanism insights. Biomedicine & Pharmacotherapy, 170, 115989. https://doi.org/10.1016/j.biopha.2023.115989
  • Büdel, B. (2024). Cyanobacteria/Blue-Green Algae. In: Büdel, B., Friedl, T., Beyschlag, W. (eds) Biology of Algae, Lichens and Bryophytes. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65712-6_3
  • Chang, C., Gao, L., Zamyadi, A., Wang, H., & Li, M. (2025). Spatial dynamics of soil algae: Insights into abundance, community structure, and ecological roles in mixed biocrusts across China. Applied Soil Ecology, 208, 105974. https://doi.org/10.1016/j.apsoil.2025.105974
  • Chilton, A. M., Nguyen, S. T., Nelson, T. M., Pearson, L. A., & Neilan, B. A. (2022). Climate dictates microbial community composition and diversity in Australian biological soil crusts (biocrusts). Environmental Microbiology, 24(11), 5467-5482.‏ https://doi.org/10.1111/1462-2920.16098
  • Dewis, J., & Freitas, F. (1970). Physical and Chemical methods of soil and water analysis. Soils Bulletin, 10,16-113.
  • Elmousel, M. Y. K., El-Mohsnawy, E., Al-Sodany, Y. M., Eltanahy, E. G., Abbas, M. A., & Ali, A. S. (2023). Microalgal diversity in response to differential heavy metals-contaminated wastewater levels at North Nile Delta, Egypt. Journal of Ecology and Environment, 47(3), 157-167.‏
  • El-Zarroug, M. R., Daghari, I., & Ahmed Ali, A. Z. (2020). A survey of desertification in Al-Hira and its surroundings areas in Libya. Journal of new sciences agriculture and biotechnology, 74(2), 4382-4387.
  • Ettl H., & Gärtner, G. (2014). Syllabus der Boden-, Luft-und Flechtenalgen, Auflage 2. Springer Spektrum, Berlin, Heidelberg.
  • Garcia, M., Bruna, P., Duran, P., & Abanto, M. (2025). Cyanobacteria and soil restoration: Bridging molecular insights with practical solutions. Microorganisms, 13(7), 1468.‏ https://doi.org/10.3390/microorganisms13071468
  • Gufwan, L. A., Peng, L., Gufwan, N. M., Lan, S., & Wu, L. (2025). Enhancing soil health through biocrusts: A microbial ecosystem approach for degradation control and restoration. Microbial Ecology, 88(1), 1-26.‏ https://doi.org/10.1007/s00248-025-02504-5
  • Hagemann, M., Henneberg, M., Felde, V. J., Drahorad, S. L., Berkowicz, S. M., Felix-Henningsen, P., & Kaplan, A. (2015). Cyanobacterial diversity in biological soil crusts along a precipitation gradient, Northwest Negev Desert, Israel. Microbial Ecology, 70(1), 219-230.‏ https://doi.org/10.1007/s00248-014-0533-z
  • Hakkoum, Z., Minaoui, F., Douma, M., Mouhri, K., & Loudiki, M. (2021). Impact of human disturbances on soil cyanobacteria diversity and distribution in suburban arid area of Marrakesh, Morocco. Ecological Processes, 10(1), 42. https://doi.org/10.1186/s13717-021-00303-7
  • Jassim, Y. A., Awadh, E. F. A., & Al-Amery, S. M. H. (2023). A review of general properties of blue-green algae (Cyanobacteria). Biomedicine and Chemical Sciences, 2(2), 143–148. https://doi.org/10.48112/bcs.v2i2.397
  • Joseph, J., & Ray, J. G. (2024). A critical review of soil algae as a crucial soil biological component of high ecological and economic significance. Journal of Phycology, 60(2), 229-253.‏ https://doi.org/10.1111/jpy.13444
  • Jurgensen, M. F., & Davey, C. B. (1968). Nitrogen-fixing blue-green algae in acid forest and nursery soils. Canadian Journal of Microbiology, 14(11), 1179-1183.‏
  • Khan, F., Akhlaq, A., Rasool, M. H., & Srinuanpan, S. (2024). Cyanobacterial Bioactive Compounds: Synthesis, Extraction, and Applications. In: Mehmood, M.A., Verma, P., Shah, M.P., Betenbaugh, M.J. (eds) Pharmaceutical and Nutraceutical Potential of Cyanobacteria. Springer, Cham. https://doi.org/10.1007/978-3-031-45523-0_9
  • Khedr, A., & Khorshid, F. (2016). Characterization and determination of major bioactive acids in camel urine using gas chromatography mass-spectrometry. Indian. J. Pharm. Sci, 78, 680-687.‏
  • Komárek, J. (2013). Cyanoprokaryota. 3. Teil. Heterocystous Genera,” in Süßwasserflora von Mitteleuropa, eds B. Büdel, G. Gärtner, L. Krienitz, and M. Schagerl (Heidelberg: Springer Spektrum), https://doi.org/10.1007/978-3-8274-2737-3
  • Komárek, J., & Anagnostidis, K. (1999). Cyanoprokaryota. 1. Teil, Chroococcales, in Süßwasserflora von Mitteleuropa, eds H. Ettl, G. Gärtner, H. Heynig, and D. Mollenhauer (Heidelberg: Spektrum Akademischer Verlag).
  • Komárek, J., & Anagnostidis, K. (2005). Cyanoprokaryota. 2. Teil. Oscillatoriales,” in Süßwasserflora von Mitteleuropa, eds B. Büdel, G. Gärtner, L. Krienitz, and M. Schagerl (Heidelberg: Elsevier GmbH Spektrum Akademischer Verlag).
  • Li, C., Chen, Z., Chen, L., & Wang, G. (2025). The adaptation mechanism of desert soil cyanobacterium Chroococcidiopsis sp. to desiccation. Plant Physiology and Biochemistry, 219, 109414.‏ https://doi.org/10.1016/j.plaphy.2024.109414
  • Liang, C., Zhang, N., Pang, Y., Li, S., Shang, J., Zhang, Y., ... & Fei, H. (2023). Cultivation of Spirulina platensis for nutrient removal from piggery wastewater. Environmental Science and Pollution Research, 30(36), 85733-85745.‏
  • Möller, J. N., Heisel, I., Satzger, A., Vizsolyi, E. C., Oster, S. J., Agarwal, S., ... & Löder, M. G. (2022). Tackling the challenge of extracting microplastics from soils: a protocol to purify soil samples for spectroscopic analysis. Environmental Toxicology and Chemistry, 41(4), 844-857.‏ https://doi.org/10.1002/etc.5024
  • Monteiro, M. I. C., Ferreira, F. N., De Oliveira, N. M. M., & Ávila, A. K. (2003). Simplified version of the sodium salicylate method for analysis of nitrate in drinking waters. Analytica Chimica Acta, 477(1), 125-129.‏ https://doi.org/10.1016/S0003-2670(02)01395-8
  • Narayanan, M. (2025). Waste Types and Their Impact on Algal and Microbial Activity. In Algal Bioengineering and Microbial Synergy to Green Remediation (pp. 107-130). Singapore: Springer Nature Singapore.‏ https://doi.org/10.1007/978-981-96-8054-2_5
  • Perera, I., Subashchandrabose, S. R., Venkateswarlu, K., Naidu, R., & Megharaj, M. (2018). Consortia of cyanobacteria/microalgae and bacteria in desert soils: an underexplored microbiota. Applied Microbiology and Biotechnology, 102, 7351-7363.‏ https://doi.org/10.1007/s00253-018-9192-1
  • Ramakrishnan, B., Maddela, N. R., Venkateswarlu, K., & Megharaj, M. (2023). Potential of microalgae and cyanobacteria to improve soil health and agricultural productivity: A critical view. Environmental Science: Advances, 2(4), 586-611.‏ https://doi.org/10.1039/d2va00158f
  • Rancel-Rodríguez, N. M., Sausen, N., Reyes, C. P., Quintana, A. M., Melkonian, B., & Melkonian, M. (2024). Unexpected Genetic diversity of nostocales (Cyanobacteria) isolated from the phyllosphere of the laurel forests in the Canary Islands (Spain). Microorganisms, 12(12), 2625.‏ https://doi.org/10.3390/microorganisms12122625
  • Řeháková, K., Chlumská, Z., & Doležal, J. (2011). Soil cyanobacterial and microalgal diversity in dry mountains of Ladakh, NW Himalaya, as related to site, altitude, and vegetation. Microbial Ecology, 62, 337-346.‏ https://doi.org/10.1007/s00248-011-9878-8
  • Saud, S., Nawaz, T., Hassan, S., Ur Rahman, T., Rasheed, M. N., Hussain, S., & Fahad, S. (2024). Nitrogen-Fixing Cyanobacteria and Soil Enrichment for a Greener Future. In Environment, Climate, Plant and Vegetation Growth. Springer, Cham. https://doi.org/10.1007/978-3-031-69417-2_14
  • Sopandi, T., Rohmah, T., & Tri Agustina, S. A. (2020). Biomass and nutrient composition of Spirulina platensis grown in goat manure media. Asian Journal of Agriculture and Biology, 8(2),‏ 158-167. https://doi.org/10.35495/ajab.2019.06.274
  • Strong, C. L., Bullard, J. E., Burford, M. A., & McTainsh, G. H. (2013). Response of cyanobacterial soil crusts to moisture and nutrient availability. Catena, 109, 195-202.‏ https://doi.org/10.1016/j.catena.2013.03.016
  • Te, S. H., Kok, J. W. K., Luo, R., You, L., Sukarji, N. H., Goh, K. C., ... & Gin, K. Y. H. (2023). Coexistence of Synechococcus and Microcystis blooms in a tropical urban reservoir and their links with microbiomes. Environmental Science & Technology, 57(4), 1613-1624. https://doi.org/10.1021/acs.est.2c04943
  • Wetzel, R.G., & Likens, G.E. (2000). Composition and Biomass of Phytoplankton. In: Limnological Analyses. Springer, New York, NY.147–174. https://doi.org/10.1007/978-1-4757-3250-4_10
  • Whitton, B. A., & Potts, M. (2007). The ecology of cyanobacteria: their diversity in time and space. Springer Science & Business Media.‏ (Eds.).
  • Zhang, B., Zhang, Y., Downing, A., & Niu, Y. (2011). Distribution and composition of cyanobacteria and microalgae associated with biological soil crusts in the Gurbantunggut Desert, China. Arid Land Research and Management, 25(3), 275-293.‏ https://doi.org/10.1080/15324982 .2011.565858
There are 43 citations in total.

Details

Primary Language English
Subjects Agricultural Spatial Analysis and Modelling
Journal Section Research Article
Authors

Ahmed Abdulrraziq 0000-0003-3722-4836

Sami Salih 0000-0001-7644-2380

Amani A. Abdulrraziq This is me 0000-0001-2345-6785

Submission Date March 19, 2025
Acceptance Date November 7, 2025
Publication Date December 25, 2025
Published in Issue Year 2025 Volume: 35 Issue: 4

Cite

APA Abdulrraziq, A., Salih, S., & Abdulrraziq, A. A. (2025). Diversity and Distribution of Cyanobacteria in Camel Barn Soil in Libya. Yuzuncu Yıl University Journal of Agricultural Sciences, 35(4), 679-692. https://doi.org/10.29133/yyutbd.1660942
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.