Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of Structural, Conformational and Antiradical Properties of Carvacrol Encapsulated with Yeast Cells (Saccharomyces cerevisiae)

Yıl 2020, , 124 - 135, 31.03.2020
https://doi.org/10.29133/yyutbd.666928

Öz

Carvacrol is the most studied phenolic substance, one of the essential components of thyme. The encapsulation technique can be used to make more stable carvacrol, which has decreased stability due to environmental factors. In this study, it was aimed to encapsulate and characterize carvacrol, which is used in the food, agriculture and pharmaceutical industry, with yeast cells. Yeast cells were pretreated with plasmolysis and carvacrol was encapsulated with both plasmolysed and non-plasmolysed cells. Carvacrol retained was 80.79% in the plasmolysed yeast cells and it was 90.43% in the non-plasmolysed yeast cell. The total amount of phenolic substances in the capsules was determined as to be 138.1 and 146.8 mg GAE/g for plasmolysed and non-plasmolysed yeast cells capsules respectively and the non-plasmolysed yeast capsules exhibited higher antiradical activity compared to the plasmolysed encapsules (PE). In addition, the encapsulation of carvacrol by yeast cells was proved by FTIR technique and structural properties were determined by scanning electron microscope.

Kaynakça

  • Aristatile, B., Al-Numair, K. S., Al-Assaf, A. H., & Pugalendi, K. V. (2011). Pharmacological effect of carvacrol on D-galactosamine-induced mitochondrial enzymes and DNA damage by single-cell gel electrophoresis. Journal of Natural Medicines, 65(3-4), 568-577. Arunasree, K. M. (2010). Anti-proliferative effects of carvacrol on a human metastatic breast cancer cell line, MDA-MB 231. Phytomedicine, 17(8-9), 581-588. Bishop, J. R. P., Nelson, G., & Lamb, J. (1998). Microencapsulation in yeast cells. Journal of Microencapsulation, 15(6), 761-773. Blagović, B., Mesarić, M., Marić, V., & Rupčić, J. (2005). Characterization of lipid components in the whole cells and plasma membranes of baker's yeast. Croatica Chemica Acta, 78(3), 479-484. Brand-Williams, W., Cuvelier, M.E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Food Science and Technology, 28(1), 25-30. Burattini, E., Cavagna, M., Dell’Anna, R., Malvezzi Campeggi, F., Monti, F., & Rossi, F. A. (2008). FTIR microspectroscopy study of autolysis in cells of the wine yeast Saccharomyces cerevisiae. Vibrational Spectroscopy, 47, 139-147 Chavan, P. S., & Tupe, S. G. (2014). Antifungal activity and mechanism of action of carvacrol and thymol against vineyard and wine spoilage yeasts. Food Control, 46, 115-120. Chow C, Palecet P (2004) Enzyme encapsulation in permeabilized Saccharomyces cerevisiae cells. Biotechnology Progress, 20, 449–456 Czerniak, A., Kubiak, P., Białas, W., & Jankowski, T. (2015). Improvement of oxidative stability of menhaden fish oil by microencapsulation within biocapsules formed of yeast cells. Journal of Food Engineering, 167, 2-11. Galichet, A., Sockalingum, G.D., Belarbi, A., & Manfait M. (2001). FTIR spectroscopic analysis of Saccharomyces cerevisiae cell walls: study of an anomalous strain exhibiting a pink-colored cell phenotype. FEMS Microbiological Letters, 197(2), 179–186. Gilling, D. H., Kitajima, M., Torrey, J. R., & Bright, K. R. (2014). Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. Journal of Applied Microbiology, 116(5), 1149-1163. Guimarães, A. G., Oliveira, G. F., Melo, M. S., Cavalcanti, S. C., Antoniolli, A. R., Bonjardim, L. R., ... & Araújo, A. A. (2010). Bioassay‐guided evaluation of antioxidant and antinociceptive activities of carvacrol. Basic & Clinical Pharmacology & Toxicology, 107(6), 949-957. Hassan, H.M. (2011). Antioxidant and immunostimulating activities of yeast (Saccharomyces cerevisiae) autolysates. World Applied Science Journal, 15, 1110-1119. Husnu, K., Başer, C. and Demirci, F. (2007). Chemistry of essential oils. In Flavours and fragrances: Chemistry, bioprocessing and sustainability, ed. R. G. Berger. Berlin, Heidelberg: Springer Berlin Heidelberg. Karaman, K. (2020). Characterization of Saccharomyces cerevisiae based microcarriers for encapsulation of black cumin seed oil: Stability of thymoquinone and antioxidant properties. Food Chemistry (In Press). Karaman, K., & Sağdıç, O. (2019). Investigation of The effect of carvacrol addition on the change of some physicochemical and bioactive properties of apple juice contaminated with Zygosaccharomyces bailii. Turkish Journal of Agriculture-Food Science and Technology, 7(11), 1882-1893. Kavosi, M., Mohammadi, A., Shojaee-Aliabadi, S., Khaksar, R., & Hosseini, S.M. (2017). Characterization and oxidative stability of purslane seed oil microencapsulated in yeast cells biocapsules. Journal of the Science of Food and Agriculture, 98, 2490–2497. Mamadalieva, N. Z., D. K. Akramov, E. Ovidi, A. Tiezzi, L. Nahar, S. S. Azimova, and S. D. Sarker. 2017. Aromatic medicinal plants of the lamiaceae family from Uzbekistan: Ethnopharmacology, essential oils composition, and biological activities. Medicines (Basel) 4 (1), 8. Milos, M., & Makota, D. (2012). Investigation of antioxidant synergisms and antagonisms among thymol, carvacrol, thymoquinone and p-cymene in a model system using the Briggs–Rauscher oscillating reaction. Food Chemistry, 131(1), 296-299. Moreno, C.S., Larrauri, J.A., & Calixto, F.S. (1998). A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, 76, 270- 276. Nieto, G. (2017). Biological activities of three essential oils of the lamiaceae family. Medicines (Basel) 4 (3), E63. Normand, V., Dardelle, G., Bouquerand, P.E., Nicolas, L., & Johnston, D.J. (2005). Flavor encapsulation in yeasts: limonene used as a model system for characterization of the release mechanism. Journal of Agriculture and Food Chemistry, 53, 7532-7543. Ozkan, A., & Erdogan, A. (2012). A comparative study of the antioxidant/prooxidant effects of carvacrol and thymol at various concentrations on membrane and DNA of parental and drug resistant H1299 cells. Natural Product Communications, 7(12), 1934578X1200701201. Paramera, E.I., Konteles, S.J., & Karathanos, V.T. (2011). Microencapsulation of curcumin in cells of Saccharomyces cerevisiae. Food Chemistry, 125, 892–902. Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. A. (2008). Introduction to spectroscopy. Cengage Learning. Sánchez, G., & Aznar, R. (2015). Evaluation of natural compounds of plant origin for inactivation of enteric viruses. Food and Environmental Virology, 7(2), 183-187. Sangwan, N. S., A. H. A. Farooqi, F. Shabih, & R.S. Sangwan. (2001). Regulation of essential oil production in plants. Plant Growth Regulation 34 (1):3–21. Shi, G., Rao, L., Yu, H., Xiang, H., Pen, G., Long, S., & Yang, C. (2007). Yeast-cell based microencapsulation of chlorogenic acid as a water-soluble antioxidant. Journal of Food Engineering, 80, 1060–1067. Shi, G.R., Rao, L.Q., Yu, H.Z., Xiang, H., Yan, H., & Ji, R. (2008). Stabilization and encapsulation of photosensitive resveratrol within yeast cell. International Journal of Pharmaceutics, 349(1–2), 83–93. Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158. Solórzano-Santos, F., & Miranda-Novales, M.G. (2012). Essential oils from aromatic herbs as antimicrobial agents. Current Opinion in Biotechnology, 23(2), 136-141. Soomer, R., & Jamieson, D.J. (1996). Yeast autolysate. The 9th International Symposium on Yeast, Sydney. Zuzarte, M., & Salgueiro, L. (2015). Essential oils chemistry. In Bioactive essential oils and cancer, ed. D. P. de Sousa. Cham: Springer International Publishing. Wettasinghe, M., Bolling, B., Pihak, L., Xiao, H., & Parkin, K. (2002). Phase II enzyme-inducing and antioxidant activities of beetrot (Beta vulgaris L.) extracts from phenotypes of different pigmentation. Journal of Agricultural and Food Chemistry, 50, 6704-6709.

Maya Hücreleri (Saccharomyces cerevisiae) ile Enkapsüle Edilen Karvakrolün Yapısal, Konformasyonel ve Antiradikal Özelliklerinin Belirlenmesi

Yıl 2020, , 124 - 135, 31.03.2020
https://doi.org/10.29133/yyutbd.666928

Öz

Karvakrol, kekik bitkisinin uçucu bileşenlerinden en çok çalışılan fenolik yapılı bir maddedir. Çevresel faktörlere bağlı olarak stabilitesi azalan karvakrolü daha stabil bir ürün haline dönüştürmek için enkapsülasyon tekniğinden faydalanılabilmektedir. Bu çalışmada gıda, ziraat ve ilaç endüstrisinde kullanımı olan karvakrolün maya hücreleri ile biyo-enkapsüle edilmesi ve karakterizasyonu amaçlanmıştır. Maya hücrelerine ön işlem olarak plazmoliz işlemi uygulanmış ve hem plazmoliz olmuş hem de olmamış hücreler ile karvakrol enkapsüle edilmiştir. Plazmolize olmuş ve olmamış maya hücrelerinde tutulan karvakrol oranları plazmolize olmuş maya hücresinde %80.79, plazmolize olmamış maya hücresinde ise %90.43 olarak tespit edilmiştir. Enkapsüllerin toplam fenolik madde miktarları plazmolize olmuş ve olmamış hücre enkapsülleri için sırasıyla 138.1 ve 146.8 mg GAE/g olarak belirlenmiş ve maya enkapsülleri içerisinde plazmoliz olmamış enkapsül (POE), plazmolize enkapsüle (PE) kıyasla daha yüksek antiradikal aktivite sergilemiştir. Ayrıca gerçekleştirilen FTIR tekniği ile karvakrolün maya hücreleri tarafından enkapsülasyonu doğrulanmış ve taramalı elektron mikroskobu ile yapısal özellikleri belirlenmiştir.

Kaynakça

  • Aristatile, B., Al-Numair, K. S., Al-Assaf, A. H., & Pugalendi, K. V. (2011). Pharmacological effect of carvacrol on D-galactosamine-induced mitochondrial enzymes and DNA damage by single-cell gel electrophoresis. Journal of Natural Medicines, 65(3-4), 568-577. Arunasree, K. M. (2010). Anti-proliferative effects of carvacrol on a human metastatic breast cancer cell line, MDA-MB 231. Phytomedicine, 17(8-9), 581-588. Bishop, J. R. P., Nelson, G., & Lamb, J. (1998). Microencapsulation in yeast cells. Journal of Microencapsulation, 15(6), 761-773. Blagović, B., Mesarić, M., Marić, V., & Rupčić, J. (2005). Characterization of lipid components in the whole cells and plasma membranes of baker's yeast. Croatica Chemica Acta, 78(3), 479-484. Brand-Williams, W., Cuvelier, M.E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Food Science and Technology, 28(1), 25-30. Burattini, E., Cavagna, M., Dell’Anna, R., Malvezzi Campeggi, F., Monti, F., & Rossi, F. A. (2008). FTIR microspectroscopy study of autolysis in cells of the wine yeast Saccharomyces cerevisiae. Vibrational Spectroscopy, 47, 139-147 Chavan, P. S., & Tupe, S. G. (2014). Antifungal activity and mechanism of action of carvacrol and thymol against vineyard and wine spoilage yeasts. Food Control, 46, 115-120. Chow C, Palecet P (2004) Enzyme encapsulation in permeabilized Saccharomyces cerevisiae cells. Biotechnology Progress, 20, 449–456 Czerniak, A., Kubiak, P., Białas, W., & Jankowski, T. (2015). Improvement of oxidative stability of menhaden fish oil by microencapsulation within biocapsules formed of yeast cells. Journal of Food Engineering, 167, 2-11. Galichet, A., Sockalingum, G.D., Belarbi, A., & Manfait M. (2001). FTIR spectroscopic analysis of Saccharomyces cerevisiae cell walls: study of an anomalous strain exhibiting a pink-colored cell phenotype. FEMS Microbiological Letters, 197(2), 179–186. Gilling, D. H., Kitajima, M., Torrey, J. R., & Bright, K. R. (2014). Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. Journal of Applied Microbiology, 116(5), 1149-1163. Guimarães, A. G., Oliveira, G. F., Melo, M. S., Cavalcanti, S. C., Antoniolli, A. R., Bonjardim, L. R., ... & Araújo, A. A. (2010). Bioassay‐guided evaluation of antioxidant and antinociceptive activities of carvacrol. Basic & Clinical Pharmacology & Toxicology, 107(6), 949-957. Hassan, H.M. (2011). Antioxidant and immunostimulating activities of yeast (Saccharomyces cerevisiae) autolysates. World Applied Science Journal, 15, 1110-1119. Husnu, K., Başer, C. and Demirci, F. (2007). Chemistry of essential oils. In Flavours and fragrances: Chemistry, bioprocessing and sustainability, ed. R. G. Berger. Berlin, Heidelberg: Springer Berlin Heidelberg. Karaman, K. (2020). Characterization of Saccharomyces cerevisiae based microcarriers for encapsulation of black cumin seed oil: Stability of thymoquinone and antioxidant properties. Food Chemistry (In Press). Karaman, K., & Sağdıç, O. (2019). Investigation of The effect of carvacrol addition on the change of some physicochemical and bioactive properties of apple juice contaminated with Zygosaccharomyces bailii. Turkish Journal of Agriculture-Food Science and Technology, 7(11), 1882-1893. Kavosi, M., Mohammadi, A., Shojaee-Aliabadi, S., Khaksar, R., & Hosseini, S.M. (2017). Characterization and oxidative stability of purslane seed oil microencapsulated in yeast cells biocapsules. Journal of the Science of Food and Agriculture, 98, 2490–2497. Mamadalieva, N. Z., D. K. Akramov, E. Ovidi, A. Tiezzi, L. Nahar, S. S. Azimova, and S. D. Sarker. 2017. Aromatic medicinal plants of the lamiaceae family from Uzbekistan: Ethnopharmacology, essential oils composition, and biological activities. Medicines (Basel) 4 (1), 8. Milos, M., & Makota, D. (2012). Investigation of antioxidant synergisms and antagonisms among thymol, carvacrol, thymoquinone and p-cymene in a model system using the Briggs–Rauscher oscillating reaction. Food Chemistry, 131(1), 296-299. Moreno, C.S., Larrauri, J.A., & Calixto, F.S. (1998). A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, 76, 270- 276. Nieto, G. (2017). Biological activities of three essential oils of the lamiaceae family. Medicines (Basel) 4 (3), E63. Normand, V., Dardelle, G., Bouquerand, P.E., Nicolas, L., & Johnston, D.J. (2005). Flavor encapsulation in yeasts: limonene used as a model system for characterization of the release mechanism. Journal of Agriculture and Food Chemistry, 53, 7532-7543. Ozkan, A., & Erdogan, A. (2012). A comparative study of the antioxidant/prooxidant effects of carvacrol and thymol at various concentrations on membrane and DNA of parental and drug resistant H1299 cells. Natural Product Communications, 7(12), 1934578X1200701201. Paramera, E.I., Konteles, S.J., & Karathanos, V.T. (2011). Microencapsulation of curcumin in cells of Saccharomyces cerevisiae. Food Chemistry, 125, 892–902. Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. A. (2008). Introduction to spectroscopy. Cengage Learning. Sánchez, G., & Aznar, R. (2015). Evaluation of natural compounds of plant origin for inactivation of enteric viruses. Food and Environmental Virology, 7(2), 183-187. Sangwan, N. S., A. H. A. Farooqi, F. Shabih, & R.S. Sangwan. (2001). Regulation of essential oil production in plants. Plant Growth Regulation 34 (1):3–21. Shi, G., Rao, L., Yu, H., Xiang, H., Pen, G., Long, S., & Yang, C. (2007). Yeast-cell based microencapsulation of chlorogenic acid as a water-soluble antioxidant. Journal of Food Engineering, 80, 1060–1067. Shi, G.R., Rao, L.Q., Yu, H.Z., Xiang, H., Yan, H., & Ji, R. (2008). Stabilization and encapsulation of photosensitive resveratrol within yeast cell. International Journal of Pharmaceutics, 349(1–2), 83–93. Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158. Solórzano-Santos, F., & Miranda-Novales, M.G. (2012). Essential oils from aromatic herbs as antimicrobial agents. Current Opinion in Biotechnology, 23(2), 136-141. Soomer, R., & Jamieson, D.J. (1996). Yeast autolysate. The 9th International Symposium on Yeast, Sydney. Zuzarte, M., & Salgueiro, L. (2015). Essential oils chemistry. In Bioactive essential oils and cancer, ed. D. P. de Sousa. Cham: Springer International Publishing. Wettasinghe, M., Bolling, B., Pihak, L., Xiao, H., & Parkin, K. (2002). Phase II enzyme-inducing and antioxidant activities of beetrot (Beta vulgaris L.) extracts from phenotypes of different pigmentation. Journal of Agricultural and Food Chemistry, 50, 6704-6709.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Kevser Karaman 0000-0003-0729-6185

Yayımlanma Tarihi 31 Mart 2020
Kabul Tarihi 29 Şubat 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Karaman, K. (2020). Maya Hücreleri (Saccharomyces cerevisiae) ile Enkapsüle Edilen Karvakrolün Yapısal, Konformasyonel ve Antiradikal Özelliklerinin Belirlenmesi. Yuzuncu Yıl University Journal of Agricultural Sciences, 30(1), 124-135. https://doi.org/10.29133/yyutbd.666928

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.