Research Article
BibTex RIS Cite

Selecting Best Rice Varieties under Drought Stress and Non-Stress Conditions Using Selection Indices

Year 2017, Volume: 27 Issue: 4, 473 - 480, 26.12.2017
https://doi.org/10.29133/yyutbd.319500

Abstract



Grain yield and most of the
traits that have economic importance in plants, herited as quantity and using
direct selection method have not large progress. So, one of the most effective
method's indirect selections as improve grain yield with a trait effective on
it, is using of selection index. In this research, 42 Iranian local and
improved rice varieties were evaluated in randomized complete block design with
three replications under two separate conditions, normal irrigation and drought
stress during 2014 and 12 traits were measured. Estimating 10 different
selection indices based on optimum and base indices in both conditions
indicated that selecting for grain yield per plant, 1000-grain weight, number
of filled grain per panicle, canopy temperature and number of panicles per
plant in non-stress condition and grain yield per plant, 1000-grain weight and
number of total spikelet per panicle in stress condition by using their path
direct coefficients as economic weights would be a suitable selection criterion
for improving of population. Results distinguished that selected varieties
based on optimum and base indices in both conditions are almost similar. Thus,
optimum and base indices in non-stress condition are proposed as a criterion
for selecting high-yield vrieties to use in stress conditions.

References

  • Acquaah G (2007). Principles of plant genetics and breeding, Wiley-Blackwell, Malden, USA. Arbuckle JL (2010). IBM SPSS Amos 19 user’s guide. Amos Development Corporation. Crawfordville FL. Baker RJ (1986). Selection indices in plant breeding, CRC Press, Inc. Bos I, Caligari P (2008). Selection methods in plant breeding, (2nd Edition ed.). Springer Science + Business Media B.V. Brim CA, Cockerham HW, Clark C (1959). Multiple selection criteria in soybeans. Agron. J. 51(1): 42. Eshghi R, Ojaghi J, Salayeva S (2011). Genetic gain through selection indices in hulless barley. Int. J. Agric. Biol. 13(2): 191-197. Fazlalipour M, Rabiei B, Samizadeh Lahiji H, Rahim Soroush H (2008). Multi-trait selection for screening elite genotypes of an F2 rice population. J. Sci. Tech. Agric. Nat. Resour. 11(42): 41-53 In Farsi Abstract in English. Gravois KA, McNew RW (1993). Genetic relationships among and selection for rice yield and yield components. Crop Sci. 33(2): 249-252. Hazel LN (1943). The genetic basis for constructing selection indexes. Genetics 28(6): 476-490. InternationalRiceResearchInstitute (2002). Standard evaluation system for rice, International Rice Research Institute, Manila, Philippines. Jannink JL, Orf JH, Jordan NR, Shaw RG (2000). Index selection for weed suppressive ability in soybean. Crop Sci. 40(4): 1087-1094. Monirifar H (2010). Evaluation of Selection Indices for Alfalfa (Medicago sativa L.). Not. Sci. Biol. 2(1): 84-87. Rabiei B, Valizadeh M, Ghareyazie B, Moghaddam M (2004). Evaluation of selection indices for improving rice grain shape. Field crops Res. 89(2-3): 359-367. Ramakrishnan SH, Anandakumar CR, Saravanan S, Malini N (2006). Association analysis of some yield traits in rice (Oryza sativa L.). J. Appl. Sci. Res. 2(7): 402-404. Sabouri H, Rabiei B, Fazlalipour M (2008). Use of selection indices based on multivariate analysis for improving grain yield in rice. Rice Sci. 15(4): 303-310. SASInstitute I (2010). Base SAS 9.2 procedures guide: statistical procedures, third edition. Cary, NC: SAS Institute Inc. Smith HF (1936). A discriminant function for plant selection. Annals of Human Genetics 7(3): 240-250. Smith OS, Hallauer AR, Russell WA (1981). Use of index selection in recurrent selection programs in maize. Euphytica 30(3): 611-618. SPSS I (2010). IBM SPSS statistics 19 core system user’s guide. USA: SPSS Inc., an IBM Company Headquarters. Weyhrich RA, Lamkey KR, Hallauer AR (1998). Responses to seven methods of recurrent selection in the BS11 maize population. Crop Sci. 38(2): 308-321. Xie C, Xu S, Mosjidis JA (1997). Multistage selection indices for maximum genetic gain and economic efficiency in red clover. Euphytica 98(1): 75-82.

Seleksiyon Endekslerini Kullanılarak Kuraklık Stresi ve Stres Olmayan Koşulları Altında En İyi Çeltik Çeşitlerinin Seçimi

Year 2017, Volume: 27 Issue: 4, 473 - 480, 26.12.2017
https://doi.org/10.29133/yyutbd.319500

Abstract

Tane verimi ve bitkilerde kantitatif kalıtımlı ve doğrudan seçme yöntemini
kullanılan ekonomik önemi olan özelliklerin çoğunun büyük bir gelişme
göstermediği saptanmıştır. Dolayısıyla, etkili bir özelliğe sahip tane verimi
artırmak için en etkin yöntemlerden dolaylı seçimlerinden biri, seleksiyon
endeksini kullanılmaktadır. Bu araştırmada 42 adet İran yerel ve gelişmiş
pirinç çeşidi, 2014 yılı boyunca normal sulama ve kuraklık stresi olmak üzere
iki ayrı koşulda üç tekerrürlü olarak tesadüfi tam blok deneme deseninde incelenmiş
ve 12 özellik değerlendirilmiştir. Her iki koşulda optimum ve baz indekslerine
dayanan 10 farklı seçim indeksinin tahmin edilmesi, ekonomik ağırlık olarak doğrudan
path katsayılarının kullanılmasıyla bitki başına tane verimi, 1000 tane
ağırlığı, başakta dolu tane sayısı, kanopi sıcaklığı ve stres olmayan koşullar
altında bitki başına başak sayısı, bitki başına tane verimi ve stres
koşullarında 1000 tane ağırlığı ve her bir başakta başakçık sayısının
populasyonun iyileştirilmesi için uygun bir seçim kriteri olacağını işaret
etmektedir. Sonuçlar, her iki koşulda da optimum ve baz indekslerine dayalı
seçilen çeşitlerin neredeyse benzer olduğunu göstermiştir. Böylece, stres olmayan
koşullarındaki optimum ve baz indeksleri, stres koşullarında yüksek verimli
çeşitlerin seçimi için bir kriter olarak önerilmektedir.

References

  • Acquaah G (2007). Principles of plant genetics and breeding, Wiley-Blackwell, Malden, USA. Arbuckle JL (2010). IBM SPSS Amos 19 user’s guide. Amos Development Corporation. Crawfordville FL. Baker RJ (1986). Selection indices in plant breeding, CRC Press, Inc. Bos I, Caligari P (2008). Selection methods in plant breeding, (2nd Edition ed.). Springer Science + Business Media B.V. Brim CA, Cockerham HW, Clark C (1959). Multiple selection criteria in soybeans. Agron. J. 51(1): 42. Eshghi R, Ojaghi J, Salayeva S (2011). Genetic gain through selection indices in hulless barley. Int. J. Agric. Biol. 13(2): 191-197. Fazlalipour M, Rabiei B, Samizadeh Lahiji H, Rahim Soroush H (2008). Multi-trait selection for screening elite genotypes of an F2 rice population. J. Sci. Tech. Agric. Nat. Resour. 11(42): 41-53 In Farsi Abstract in English. Gravois KA, McNew RW (1993). Genetic relationships among and selection for rice yield and yield components. Crop Sci. 33(2): 249-252. Hazel LN (1943). The genetic basis for constructing selection indexes. Genetics 28(6): 476-490. InternationalRiceResearchInstitute (2002). Standard evaluation system for rice, International Rice Research Institute, Manila, Philippines. Jannink JL, Orf JH, Jordan NR, Shaw RG (2000). Index selection for weed suppressive ability in soybean. Crop Sci. 40(4): 1087-1094. Monirifar H (2010). Evaluation of Selection Indices for Alfalfa (Medicago sativa L.). Not. Sci. Biol. 2(1): 84-87. Rabiei B, Valizadeh M, Ghareyazie B, Moghaddam M (2004). Evaluation of selection indices for improving rice grain shape. Field crops Res. 89(2-3): 359-367. Ramakrishnan SH, Anandakumar CR, Saravanan S, Malini N (2006). Association analysis of some yield traits in rice (Oryza sativa L.). J. Appl. Sci. Res. 2(7): 402-404. Sabouri H, Rabiei B, Fazlalipour M (2008). Use of selection indices based on multivariate analysis for improving grain yield in rice. Rice Sci. 15(4): 303-310. SASInstitute I (2010). Base SAS 9.2 procedures guide: statistical procedures, third edition. Cary, NC: SAS Institute Inc. Smith HF (1936). A discriminant function for plant selection. Annals of Human Genetics 7(3): 240-250. Smith OS, Hallauer AR, Russell WA (1981). Use of index selection in recurrent selection programs in maize. Euphytica 30(3): 611-618. SPSS I (2010). IBM SPSS statistics 19 core system user’s guide. USA: SPSS Inc., an IBM Company Headquarters. Weyhrich RA, Lamkey KR, Hallauer AR (1998). Responses to seven methods of recurrent selection in the BS11 maize population. Crop Sci. 38(2): 308-321. Xie C, Xu S, Mosjidis JA (1997). Multistage selection indices for maximum genetic gain and economic efficiency in red clover. Euphytica 98(1): 75-82.
There are 1 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Mehdi Rahımı

Mehdi Ramezanı

Mojtaba Kordrostamı This is me

Publication Date December 26, 2017
Acceptance Date October 19, 2017
Published in Issue Year 2017 Volume: 27 Issue: 4

Cite

APA Rahımı, M., Ramezanı, M., & Kordrostamı, M. (2017). Selecting Best Rice Varieties under Drought Stress and Non-Stress Conditions Using Selection Indices. Yuzuncu Yıl University Journal of Agricultural Sciences, 27(4), 473-480. https://doi.org/10.29133/yyutbd.319500
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.