Araştırma Makalesi
BibTex RIS Kaynak Göster

Fasulye Genomunda 2,4-Diklorofenoksiasetik Asit Genotoksisitesine Karşı Β-Östradiolün Hafifletici Rolü

Yıl 2018, Cilt: 28 Sayı: 1, 1 - 9, 30.03.2018
https://doi.org/10.29133/yyutbd.305274

Öz











2,4-Diklorofenoksiasetik asit (2,4-D) tahıl ekin kültüründe Taraxacum officinale ve geniş yapraklı
yabancı otların gelişmesini önlemek için yaygın olarak kullanılan
herbisitlerden biridir. Ancak, 2,4-D'nin, düşük konsantrasyonlarda bitkilerde
genetik hasarın yanı sıra gözlemlenebilir fizyolojik etkilere neden olduğu
bilinmektedir. Uygulanan 2,4-D'ye karşı bitkilerde memeli hormonlarının
etkisini araştıran herhangi bir rapor bulunmamaktadır. Bu nedenle, bu çalışma
2,4-D'ye maruz bırakılan fasulye (Phaseolus
vulgaris
)'deki DNA hasarı, DNA metilasyonu ve DNA stabilitesindeki
değişimleri araştırmayı ve β-östradiolün herhangi bir etkisinin olup olmadığını
belirlemeyi amaçlamıştır. DNA hasar düzeylerini ve DNA metilasyon modelindeki
değişiklikleri tanımlamak için RAPD (Rastgele Çoğaltılan Polimorfik DNA) ve
CRED-RA (Çift Restriksiyon Enzim Kesimi-Rastgele Çoğaltımı) teknikleri
kullanılmıştır. Elde edilen veriler, 2,4-D'nin RAPD profil değişikliklerinde
(DNA hasarında) artışa ve genomik kararlılık stabilitesinde (GTS) ise azalışa
neden olduğunu göstermiştir. 2,4-D'nin neden olduğu etkiler, farklı β-östradiol
konsantrasyonları uygulandıktan sonra azalmıştır. Bu çalışmanın sonuçları,
fasulyelerde 2,4-D herbisitin neden olduğu genetik ve epigenetik
değişikliklerin engellenmesi için β-östradiolün etkin bir şekilde
kullanılabileceğini açıkça göstermektedir.

Kaynakça

  • Adlercreutz H (2002). Phyto-oestrogens and cancer. Lancet Oncol. 3 (6): 364-73.
  • Afzal I, Basara SMA, Faooq Mand Nawaz A (2006). Alleviation of salinity stress in spring wheat by hormonal priming with ABA, salicylic acid and ascorbic acid. Int. J. Agric. Biol. 8: 23-28.
  • Almeira CM, Moreno AJ, Madeira VMC (1995). Thiols metabolism is altered by the herbicides paraquat, dinoseb and 2,4-D: A study in isolated hepatocytes. Toxicol. Lett. 81: 115-123.
  • Bukowska B (2006). Toxicity of 2,4-Dichlorophenoxyacetic Acid – Molecular Mechanisms. Polish Journal of Environmental Studies 15: 365-374.
  • Cenkci S, Yıldız M, Cigerci IH, Bozdag A, Terzi H, Terzi ESA (2010). Evaluation of 2,4-D and Dicamba genotoxicity in bean seedlings using comet and RAPD assays. Ecotoxicology and Environmental Safety 73: 1558-1564.
  • De Moliner KL, Evangelista De Duffard AM, Soto E, Duffard R, Adamo AM (2002). Induction of apoptosis in cerebellar granule cells by 2,4-dichlorophenoxyacetic acid. Neurochem. Res. 27: 1439-1446.
  • Dogra R, Thukral AK (1996). Effect of steroid on some inorganic constituents of wheat plants. Curr. Res. Plant Sci. 2: 155-160.
  • Erdal S, Dumlupinar R (2010). Progesterone and β-estradiol stimulate the seed germination in chickpea by causing important changes in biochemical parameters. Z. Naturforsch. C. 65: 239-244.
  • Erdal S, Dumlupinar R (2011). Exogenously treated mammalian sex hormones affects inorganic constituents of plants. Biol. Trace. Elem. Res. 143: 500-506.
  • Filkowski J, Besplug J, Burke P, Kovalchuk I, Kovalchuk O (2003). Genotoxicity of 2,4-D and dicamba revealed by transgenic Arabidopsis thaliana plants harboring recombination and point mutation markers. Mut. Res. 542: 23-32.
  • Finnegan EJ, Peacock WJ, Dennis ES (2000). DNA methylation, a key regulator of plant development and other processes. Curr. Opin. Genet. Dev. 10: 217-223.
  • Grabinsk A, Wiśniowska E, Kalk AJ (2003). Toxicity of selected synthetic auxines 2,4-D and MCPA derivatives to broad-leaved and cereal plants. Crop Protection. 22: 355-360.
  • Johnston I (2003) Phytochem Functional Foods. CRC Press Inc pp: 66–68.
  • Kaioumova D, Kaioumov F, Opelz G, Susal C (2001). Toxic effects of the herbicide 2,4-dichlorophenoxyacetic acid ion lymphoid organs of the rat. Chemosphere 43: 801-805.
  • Karami O, Saidi EA (2010) The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol. Biol. Rep. 37: 2493–2507.
  • Karl H, Lauchli MA (2000). Interaction of NaCl and Cd stress on compartmentation pattern of cations, antioxidant enzymes and proteins in leaves of two wheat genotypes differing in salt tolerance. Biol. Plant. 43: 245–251.
  • Kloti A, He X, Potrykus I, Hohn T, Futterer J (2002). Tissue-specific silencing of a transgene in rice, Proc Natl Acad Sci USA 99: 10881-10886.
  • Leegood RC, Lea P (1998). Plant Biochemistry and Molecular Biology. John Wiley & Sons pp: 211.
  • Leljak-Levanic D, Naana B, Jelaska MS (2004). Changes in DNA methylation during somatic embryogenesis in Cucurbita pepo L. Plant. Cell. Rep. 23: 120-127.
  • Lo Schiavo F, Pitto L, Giuliano G et al. (1989). DNA methylation of embryogenic carrot cell culture and its variation as caused by mutation differentiation hormones and hypomethyalating. Theory. Apply. Genet. 77: 325-331.
  • Oakes DJ, Pollack JK (2000). The in vitro evaluation of the toxicities of three related herbicide formulations containing ester derivatives of 2,4.5-T and 2,4-D using sub-mitochondrial particles. Toxicology 151: 1-9.
  • Pavokovi D, Krsnik-Rasol M (2012). Protein glycosylation in sugar beet cell line can be influenced by DNA hyper- and hypomethylating agents. Acta. Bot. Croat. 71(1): 1-12.
  • Sigmaz B, Agar G, Arslan E. et al. (2015). The role of putrescine against the long terminal repeat (LTR) retrotransposon polymorphisms induced by salinity stress in Triticum aestivum. Acta. Physiol. Plant. 37: 251.
  • Turner JV, Agatonovic-Kustrin S, Glass BD (2007). Molecular aspects of phytoestrogen selective binding at estrogen receptors. J Pharm Sci 96 (8): 1879-1885.
  • Vielle CJP, Thomas J, Spillane C, Coluccio A, Hoeppner MA, Grossniklaus U (1999). Maintenance of genome imprinting at the Arabidopsis medea locus requires zygotic DDM1 activity. Genes. Dev. 13: 2971-2982.
  • Wauchope RD, Buttler TM, Hornsby AG, Augustijn-Beckers PM (1992). Pesticide properties database for environmental decision making. Rev. Environ. Contam. Toxicol. 123: 7-22.
  • Yildirim N, Agar G, Taspinar MS, Turan M, Aydin M, Arslan E (2014). Protective role of humic acids against dicamba-induced genotoxicity and DNA methylation in Phaseolus vulgaris L. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 64 (2): 141-148.
  • Yildiz F (2005). Phytoestrogens in Functional Foods. Taylor & Francis Ltd. pp:3–5:210–211.
  • Yoon HW, Kim MC, Shin PG et al. (1997). Differential expression of two functional serine/threonine protein kinases from soyabean that have an unusual acidic domain at the carboxy terminus. Mol. Gen. Genet. 255: 359-371.

Alleviative Role of Β-Estradiol Against 2,4-Dichlorophenoxyacetic Acid Genotoxicity on Common Bean Genome

Yıl 2018, Cilt: 28 Sayı: 1, 1 - 9, 30.03.2018
https://doi.org/10.29133/yyutbd.305274

Öz



2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the several herbicides that widely
used to prevent development of
Taraxacum
officinale
and broadleaf weeds on cereal crops culture. However, it is known that
2,4-D can cause genetic damage to plants at low concentrations as well as
produce observable physiological effects. There is no report investigating the
effect of mammalian hormones in crops against the applied 2,4-D. Therefore, the
present study was aimed at investigating levels of DNA damage, changes in DNA
methylation and DNA stability
in common bean (Phaseolus vulgaris) exposed
to 2,4-D and determine whether β-estradiol has any effect. RAPDs
(Randomly Amplified
Polymorphic DNA)
and CRED-RAs (Coupled Restriction Enzyme Digestion-Random
Amplification)
techniques were used to define the DNA damage levels and changes in the
pattern of DNA methylation.  The obtained
data demonstrated that 2,4-D
led to an increase in RAPDs profile changes (DNA damage), and a
reduction in genomic template stability (GTS). The effects caused by 2,4-D were
decreased after application with different concentrations of
β-estradiol. The
results of this study clearly show that β-estradiol could be used function
effectively to prevented from the genetic and epigenetic changes caused by
2,4-D herbicide in common bean.

Kaynakça

  • Adlercreutz H (2002). Phyto-oestrogens and cancer. Lancet Oncol. 3 (6): 364-73.
  • Afzal I, Basara SMA, Faooq Mand Nawaz A (2006). Alleviation of salinity stress in spring wheat by hormonal priming with ABA, salicylic acid and ascorbic acid. Int. J. Agric. Biol. 8: 23-28.
  • Almeira CM, Moreno AJ, Madeira VMC (1995). Thiols metabolism is altered by the herbicides paraquat, dinoseb and 2,4-D: A study in isolated hepatocytes. Toxicol. Lett. 81: 115-123.
  • Bukowska B (2006). Toxicity of 2,4-Dichlorophenoxyacetic Acid – Molecular Mechanisms. Polish Journal of Environmental Studies 15: 365-374.
  • Cenkci S, Yıldız M, Cigerci IH, Bozdag A, Terzi H, Terzi ESA (2010). Evaluation of 2,4-D and Dicamba genotoxicity in bean seedlings using comet and RAPD assays. Ecotoxicology and Environmental Safety 73: 1558-1564.
  • De Moliner KL, Evangelista De Duffard AM, Soto E, Duffard R, Adamo AM (2002). Induction of apoptosis in cerebellar granule cells by 2,4-dichlorophenoxyacetic acid. Neurochem. Res. 27: 1439-1446.
  • Dogra R, Thukral AK (1996). Effect of steroid on some inorganic constituents of wheat plants. Curr. Res. Plant Sci. 2: 155-160.
  • Erdal S, Dumlupinar R (2010). Progesterone and β-estradiol stimulate the seed germination in chickpea by causing important changes in biochemical parameters. Z. Naturforsch. C. 65: 239-244.
  • Erdal S, Dumlupinar R (2011). Exogenously treated mammalian sex hormones affects inorganic constituents of plants. Biol. Trace. Elem. Res. 143: 500-506.
  • Filkowski J, Besplug J, Burke P, Kovalchuk I, Kovalchuk O (2003). Genotoxicity of 2,4-D and dicamba revealed by transgenic Arabidopsis thaliana plants harboring recombination and point mutation markers. Mut. Res. 542: 23-32.
  • Finnegan EJ, Peacock WJ, Dennis ES (2000). DNA methylation, a key regulator of plant development and other processes. Curr. Opin. Genet. Dev. 10: 217-223.
  • Grabinsk A, Wiśniowska E, Kalk AJ (2003). Toxicity of selected synthetic auxines 2,4-D and MCPA derivatives to broad-leaved and cereal plants. Crop Protection. 22: 355-360.
  • Johnston I (2003) Phytochem Functional Foods. CRC Press Inc pp: 66–68.
  • Kaioumova D, Kaioumov F, Opelz G, Susal C (2001). Toxic effects of the herbicide 2,4-dichlorophenoxyacetic acid ion lymphoid organs of the rat. Chemosphere 43: 801-805.
  • Karami O, Saidi EA (2010) The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol. Biol. Rep. 37: 2493–2507.
  • Karl H, Lauchli MA (2000). Interaction of NaCl and Cd stress on compartmentation pattern of cations, antioxidant enzymes and proteins in leaves of two wheat genotypes differing in salt tolerance. Biol. Plant. 43: 245–251.
  • Kloti A, He X, Potrykus I, Hohn T, Futterer J (2002). Tissue-specific silencing of a transgene in rice, Proc Natl Acad Sci USA 99: 10881-10886.
  • Leegood RC, Lea P (1998). Plant Biochemistry and Molecular Biology. John Wiley & Sons pp: 211.
  • Leljak-Levanic D, Naana B, Jelaska MS (2004). Changes in DNA methylation during somatic embryogenesis in Cucurbita pepo L. Plant. Cell. Rep. 23: 120-127.
  • Lo Schiavo F, Pitto L, Giuliano G et al. (1989). DNA methylation of embryogenic carrot cell culture and its variation as caused by mutation differentiation hormones and hypomethyalating. Theory. Apply. Genet. 77: 325-331.
  • Oakes DJ, Pollack JK (2000). The in vitro evaluation of the toxicities of three related herbicide formulations containing ester derivatives of 2,4.5-T and 2,4-D using sub-mitochondrial particles. Toxicology 151: 1-9.
  • Pavokovi D, Krsnik-Rasol M (2012). Protein glycosylation in sugar beet cell line can be influenced by DNA hyper- and hypomethylating agents. Acta. Bot. Croat. 71(1): 1-12.
  • Sigmaz B, Agar G, Arslan E. et al. (2015). The role of putrescine against the long terminal repeat (LTR) retrotransposon polymorphisms induced by salinity stress in Triticum aestivum. Acta. Physiol. Plant. 37: 251.
  • Turner JV, Agatonovic-Kustrin S, Glass BD (2007). Molecular aspects of phytoestrogen selective binding at estrogen receptors. J Pharm Sci 96 (8): 1879-1885.
  • Vielle CJP, Thomas J, Spillane C, Coluccio A, Hoeppner MA, Grossniklaus U (1999). Maintenance of genome imprinting at the Arabidopsis medea locus requires zygotic DDM1 activity. Genes. Dev. 13: 2971-2982.
  • Wauchope RD, Buttler TM, Hornsby AG, Augustijn-Beckers PM (1992). Pesticide properties database for environmental decision making. Rev. Environ. Contam. Toxicol. 123: 7-22.
  • Yildirim N, Agar G, Taspinar MS, Turan M, Aydin M, Arslan E (2014). Protective role of humic acids against dicamba-induced genotoxicity and DNA methylation in Phaseolus vulgaris L. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 64 (2): 141-148.
  • Yildiz F (2005). Phytoestrogens in Functional Foods. Taylor & Francis Ltd. pp:3–5:210–211.
  • Yoon HW, Kim MC, Shin PG et al. (1997). Differential expression of two functional serine/threonine protein kinases from soyabean that have an unusual acidic domain at the carboxy terminus. Mol. Gen. Genet. 255: 359-371.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mahmut Sinan Taşpınar

Burcu Sığmaz Bu kişi benim

Murat Aydın

Esra Arslan

Güleray Ağar

Yayımlanma Tarihi 30 Mart 2018
Kabul Tarihi 6 Ocak 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 28 Sayı: 1

Kaynak Göster

APA Taşpınar, M. S., Sığmaz, B., Aydın, M., Arslan, E., vd. (2018). Alleviative Role of Β-Estradiol Against 2,4-Dichlorophenoxyacetic Acid Genotoxicity on Common Bean Genome. Yuzuncu Yıl University Journal of Agricultural Sciences, 28(1), 1-9. https://doi.org/10.29133/yyutbd.305274

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.