Year 2018, Volume 23, Issue 3, Pages 297 - 307 2018-12-11

Sınıflandırma ve Regresyon Ağaçları ile Rastgele Orman Algoritması Kullanarak Botnet Tespiti: Van Yüzüncü Yıl Üniversitesi Örneği

Duygu Korkmaz [1] , H. Eray Çelik [2] , Mesut Kapar [3]

55 233

Bir botnet, kötü amaçlı yazılım kodunun bulaşmış olduğu, bir veya daha fazla makineden oluşan bir ağdır. Botnet, Botmaster denilen kişiler tarafından yönetilir ve DDos, Spam, Kimlik Hırsızlığı gibi faaliyetler için kullanılmaktadır. Bu çalışmanın amacı, bir Network üzerinde botnet bulaşmış network cihazı olup olmadığını, Makine Öğrenmesi Algoritmalarından, Sınıflandırma Ağaçları ve Regresyon Ağacı (CART) ile Rastgele Orman teknikleriyle tespit etmek ve sınıflandırmaktır. Modellerin sınıflandırma performansları bazı performans ölçütleri bakımından ölçülmüş ve kıyaslanmıştır. Ele alınan değişkenler, ekleyip çıkarılarak doğruluk ve bazı performans ölçütleri üzerindeki değişimler Sınıflandırma Ağaçları Yöntemi ve Rastgele Orman Algoritması Yöntemi ile incelenmiştir ve bir ağda Botnet tespiti yapmak için önemli olan değişkenler önerilmiştir.

Düğüm, Gini, Hata matrisi, Phyton, Siber güvenlik
  • Akman, M., Genç, Y., Ankarali, H., (2011). Random forests yöntemi ve sağlık alanında bir uygulama, Türkiye Klinikleri Journal of Biostatistics, 3 (1): 36-48.
  • Alpaydin, E., (2014). Introduction to Machine Learning, MIT Press, 3rt edition.
  • Anonim, (2018a). Sosyal Medya ve Mobil Kullanıcı İstatistikleri. https://dijilopedi.com/2018-internet-kullanimi-ve-sosyal-medya-istatistikleri/ Erişim tarihi: 01.03.2018. Anonim, (2018b). Avrupadaki En Fazla Siber Saldırı Türkiye’de. http://www.sigortacigazetesi.com.tr/avrupadaki-en-fazla-siber-saldiri-turkiyede/ Erişim tarihi: 01.03.2018.
  • Bock, H. H., (2002). Data mining tasks and methods: Classification: the goal of classification, In Handbook of Data Mining and Knowledge Discovery, 254-258.
  • Breiman, L., (2001) . Random Forests, Machine Learning, 45 (1): s.5-32.
  • Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J., (2017). Classification and Regression Trees, Taylor Francis, Berkeley, California.
  • Chen, R., Niu, W., Zhang, X., Zhuo, Z., Lv, F., (2017). An effective conversation-based botnet detection method, Mathematical Problems in Engineering, Article ID 4934082, 9 pages.
  • Chipman, H. A., George, E. I., McCulloch, R. E., (1998). Bayesian CART modelsearch, Journal of the American Statistical Association, 93 (443): 935-948.
  • De'ath, G., Fabricius, K. E., (2000). Classification and regression trees: a powerful yet simple technique for ecological data analysis, Ecology, 81(11), 3178-3192.
  • Gu, G., Zhang, J., & Lee, W., (2008). BotSniffer: Detecting botnet command and control channels in network traffic, 17th USENIX Security Symposium.
  • Guttman, A., (1984). R-trees: A dynamic index structure for spatial searching,47-57: SIGMOD'84, Proceedings of Annual Meeting, Boston, Massachusetts, June 18-21.
  • Kalaivani, P., Vijaya, M., (2016), Mining based detection of botnet traffic in network flow, International Journal of computer Science and information Technology & Security, 6: 535-540. ,Karasaridis, A., Rexroad, B., Hoeflin, D. A., (2007). Wide-Scale Botnet Detection and Characterization. HotBots, 7: 7.
  • Loh, W. Y., (2011). Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1 (1): 14-23.
  • Shinder, D. L., Tittel, E. (2002). Scene of the Cybercrime: Computer Forensics Handbook, Syngress Publishing.
  • Suchetana, B., Rajagopalan, B., Silverstein, J., (2017). Assessment of wastewater treatment facility compliance with decreasing ammonia discharge limits using a regression tree model, Science of the Total Environment, 598: 249-257.
  • Timofeev, R., (2004). Classification and Regression Trees (CART) Theory and Applications (master thesis). Humboldt University, Berlin.
  • Watts, J. D., Powell, S. L., Lawrence, R. L., Hilker, T., (2011). Improved classification of conservation tillage adoption using high temporal and synthetic satellite imagery, Remote Sensing of Environment, 115 (1): 66-75.
  • Zhao, D., Traore, I., Sayed, B., Lu, W., Saad, S., Ghorbani, A., Garant, D., (2013). Botnet detection based on traffic behavior analysis and flow intervals. Computers & Security, 39: 2-16.
Primary Language tr
Subjects Science
Journal Section Articles
Authors

Author: Duygu Korkmaz

Orcid: 0000-0001-7490-8124
Author: H. Eray Çelik (Primary Author)
Institution: VAN YÜZÜNCÜ YIL ÜNİVERSİTESİ
Country: Turkey


Author: Mesut Kapar

Bibtex @research article { yyufbed463135, journal = {Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi}, issn = {1300-5413}, eissn = {2667-467X}, address = {Yuzuncu Yil University}, year = {2018}, volume = {23}, pages = {297 - 307}, doi = {}, title = {Sınıflandırma ve Regresyon Ağaçları ile Rastgele Orman Algoritması Kullanarak Botnet Tespiti: Van Yüzüncü Yıl Üniversitesi Örneği}, key = {cite}, author = {Korkmaz, Duygu and Çelik, H. Eray and Kapar, Mesut} }
APA Korkmaz, D , Çelik, H , Kapar, M . (2018). Sınıflandırma ve Regresyon Ağaçları ile Rastgele Orman Algoritması Kullanarak Botnet Tespiti: Van Yüzüncü Yıl Üniversitesi Örneği. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23 (3), 297-307. Retrieved from http://dergipark.org.tr/yyufbed/issue/40843/463135
MLA Korkmaz, D , Çelik, H , Kapar, M . "Sınıflandırma ve Regresyon Ağaçları ile Rastgele Orman Algoritması Kullanarak Botnet Tespiti: Van Yüzüncü Yıl Üniversitesi Örneği". Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 (2018): 297-307 <http://dergipark.org.tr/yyufbed/issue/40843/463135>
Chicago Korkmaz, D , Çelik, H , Kapar, M . "Sınıflandırma ve Regresyon Ağaçları ile Rastgele Orman Algoritması Kullanarak Botnet Tespiti: Van Yüzüncü Yıl Üniversitesi Örneği". Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 (2018): 297-307
RIS TY - JOUR T1 - Sınıflandırma ve Regresyon Ağaçları ile Rastgele Orman Algoritması Kullanarak Botnet Tespiti: Van Yüzüncü Yıl Üniversitesi Örneği AU - Duygu Korkmaz , H. Eray Çelik , Mesut Kapar Y1 - 2018 PY - 2018 N1 - DO - T2 - Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi JF - Journal JO - JOR SP - 297 EP - 307 VL - 23 IS - 3 SN - 1300-5413-2667-467X M3 - UR - Y2 - 2018 ER -
EndNote %0 YUZUNCU YIL UNIVERSITY JOURNAL OF THE INSTITUTE OF NATURAL AND APPLIED SCIENCES Sınıflandırma ve Regresyon Ağaçları ile Rastgele Orman Algoritması Kullanarak Botnet Tespiti: Van Yüzüncü Yıl Üniversitesi Örneği %A Duygu Korkmaz , H. Eray Çelik , Mesut Kapar %T Sınıflandırma ve Regresyon Ağaçları ile Rastgele Orman Algoritması Kullanarak Botnet Tespiti: Van Yüzüncü Yıl Üniversitesi Örneği %D 2018 %J Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi %P 1300-5413-2667-467X %V 23 %N 3 %R %U
ISNAD Korkmaz, Duygu , Çelik, H. Eray , Kapar, Mesut . "Sınıflandırma ve Regresyon Ağaçları ile Rastgele Orman Algoritması Kullanarak Botnet Tespiti: Van Yüzüncü Yıl Üniversitesi Örneği". Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 / 3 (December 2018): 297-307.