Year 2018, Volume 28, Issue 4, Pages 482 - 489 2018-12-31

Equations Developed to Estimate Evapotranspiration in Greenhouses
Seralarda Evapotranspirasyon Tahmini için Geliştirilen Denklemler

Cİhan KARACA [1] , Ahmet TEZCAN [2] , Kenan BÜYÜKTAŞ [3] , Dursun BÜYÜKTAŞ [4] , Ruhi BAŞTUĞ [5]

50 215

It is estimated that the world population will be 9.6 billion by 2050. In order to meet the food needs of the growing population, it is necessary to increase the yield obtained from existing agricultural land. As the greenhouse provides a more controlled environment, the yield taken from the unit area is higher than the field conditions. For this reason, the greenhouse cultivation has been increased in year by year. Irrigation is one of the major cultural applications for increasing yield from the unit area. It is important that crop water requirement should be determined correctly for proper irrigation scheduling in greenhouse. The use of equations based on climate to determine evapotranspiration has been increased in recent years. In this study, estimation performances of evapotranspiration equations based on the reference crop (Penman, Hargreaves, FAO-24-Radiation, Priestley-Taylor, FAO-Penman Monteith, FAO24-Pan Evaporation) and main crop (Stanghellini, Fynn, Takakura, Simplified Model) developed from the past to the present day were reviewed. It is concluded that there is no standard equation under greenhouse conditions to determine evapotranspiration of a specific crop. The reason for this is that greenhouse climate changes depending on greenhouse type, location, direction, cover material, greenhouse volume, ventilation mechanism, usage of thermal curtain and shadow powder and even cultural applications such as hanging. However, it is possible to develop new equation or calibrate existing equations for each different greenhouse in the same region. Therefore, it is suggested that evapotranspiration equations to be used should be selected depending on the type of greenhouses commonly used in the region and, if necessary, modified according to these conditions.

Dünya nüfusunun 2050 yılında 9.6 milyar olacağı tahmin edilmektedir. Artan nüfusun gıda ihtiyacının karşılanabilmesi için mevcut tarım arazilerinden alınan verimin arttırılması gerekmektedir. Seralar daha kontrolü bir ortam sağladığı için birim alandan alınan verim tarla koşullarına kıyasla daha fazladır. Bu nedenle seraların kullanımı son yıllarda giderek artmaktadır. Birim alandan alınan verimin artırılması için en önemli kültürel uygulamaların başında sulama gelmektedir. Sera koşullarında uygun bir sulama programlaması için bitki su tüketiminin doğru belirlenmesi önemlidir. ET’nin belirlenmesi için iklime dayalı eşitliklerin kullanımı son yıllarda artmaktadır. Bu çalışmada geçmişten günümüze kadar kıyas bitkiye (Penman, Hargreaves, FAO-24-Radiation, Priestley-Taylor, FAO-Penman Monteith, FAO24-Pan Evaporation), ve esas bitkiye dayalı (Stanghellini, Fynn, Takakura, Simplified Model) geliştirilmiş olan ET eşitliklerinin tahmin performansları incelenmiştir. Çalışma sonucunda sera koşullarında standart bir yöntemin bulunmadığı görülmüştür. Bunun nedeni sera içi ikliminin sera tipini, sera konumun, örtü malzemesine, sera iç hacmine, havalandırma mekanizmasına, ısı perdesi ve gölge tozu kullanımına hatta askıya alma gibi kültürel uygulamalara göre değişmesindendir. Ancak bir bölgede bulunan farklı özellikteki her bir sera için yeni bir eşitlik geliştirilmesi ya da mevcut eşitliklerin kalibre edilmesi mümkün değildir. Bu nedenle kullanılacak ET eşitlikleri bölgede yaygın olarak kullanılan sera tipine göre seçilmesi ve gerekirse bu şartlara göre modifiye edilerek kullanılması önerilmektedir.

  • Allen RG, Pereira LS, Raes D, Smith M (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. FAO, Roma, 300 pp.
  • Altıntaş G, Akçay Y (2009). Arazi Toplulaştırması Uygulamalarında Üreticilerin Toplulaştırmaya Bakış Açılarını Etkileyen Faktörler. Tarım Ekonomisi Dergisi 15(1): 35–43.
  • Baille M, Baille A, Laury JC (1994). A simplified model for predicting evapotranspiration rate of nine ornamental species vs. climate factors and leaf area. Scientia Horticulturae 59(3–4): 217–232, doi: 10.1016/0304-4238(94)90015-9
  • Boulard T, Wang S (2000). Greenhouse crop transpiration simulation from external climate conditions. Agricultural and Forest Meteorology 100(1): 25–34, doi: 10.1016/S0168-1923(99)00082-9
  • Büyükcangaz H, Değirmenci H (2002). Drenaj Sularının Sulamada Yeniden Kullanılması. Su Havzalarında Toprak ve Su Kaynaklarının Korunması, Geliştirilmesi ve Yönetimi Sempozyumu-Antakya : 614–617.
  • Chartzoulakis K, Drosos N (1995). Water use and yield of greenhouse grown eggplant under drip irrigation. Agricultural Water Management 28(2): 113–120, doi: 10.1016/0378-3774(95)01173-G
  • Doorenboos J, Pruitt WO (1977). Guidelines for Predicting Crop Water Requirements, Irrigation and Drainage Paper 24. Land and Water Development Division FAO Rome 24: 144.
  • Fernández MD, Bonachela S, Orgaz F, Thompson R, López JC, Granados MR, Gallardo M, Fereres E (2010). Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrigation Science 28(6): 497–509, doi: 10.1007/s00271-010-0210-z
  • Fynn RP, Alshooshan A, Short TH, McMahon RW (1993). Evapotranspiration Measurement and Modeling for a Potted Chrysanthemum Crop. Transactions of the Asae 36(6): 1907–1913, doi: 10.13031/2013.28541
  • Gavilán P, Ruiz N, Lozano D (2015). Daily forecasting of reference and strawberry crop evapotranspiration in greenhouses in a Mediterranean climate based on solar radiation estimates. Agricultural Water Management 159: 307–317, doi: 10.1016/j.agwat.2015.06.012
  • Güllüler F (2007). Adana İli Ve İlçelerindeki Seraların Yapısal Özelliklerinin İncelenmesi ve T.S.E Standartlarına Uygunluğunun Araştırılması. ÇÜ Fen Bilimleri Enstitüsü Tarımsal Yapılar ve Sulama Anabilim Dalı Yüksek Lisans Tezi, Adana : 86 pp.
  • Hamdy A, Ragab R, Scarascia-Mugnozza E (2003). Coping with water scarcity: Water saving and increasing water productivity. Irrigation and Drainage. pp 3–20, doi: 10.1002/ird.73
  • Hargreaves G., Samani Z. (1985). Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture 1(2): 96–99, doi: 10.13031/2013.26773
  • Ilahi WFF (2009). Evapotranspiration Models in Greenhouse. Master thesis-Agricultural and Bioresearch Engineering at Wageningen University, The Netherlands : 52
  • İlbay E, Mavi F (2015). TR63 Bölgesi Seracılık (Örtüaltı Bitki Yetiştiriciliği) Sektör Raporu. TC Doğu Akdeniz Kalkınma Ajansı : 59 pp.
  • Irmak S, Irmak A, Allen RG, Jones JW (2003). Solar and Net Radiation-Based Equations to Estimate Reference Evapotranspiration in Humid Climates. Journal of Irrigation and Drainage Engineering 129(5): 336–347, doi: 10.1061/(ASCE)0733-9437(2003)129:5(336)
  • Jolliet O, Bailey BJ (1992). The effect of climate on tomato transpiration in greenhouses: measurements and models comparison. Agricultural and Forest Meteorology 58(1–2): 43–62, doi: 10.1016/0168-1923(92)90110-P
  • Karaca C, Büyüktaş D, Baştuğ R, Aydinşakir K, Tekelioğlu B (2017a). Antalya koşullarında kıyas bitki su tüketiminin alansal ve zamansal dağılımının belirlenmesi. Derim 2017(34): 158–171.
  • Karaca C, Tekelioğlu B, Büyüktaş D, Baştuğ R (2017b). Assessment of the Equations Computing Reference Crop Evapotranspiration. Academia Journal of Engineering and Applied Sciences ICAE-IWC(Special Issue): 144–161.
  • Katerji N, Mastrorilli M, Rana G (2008). Water use efficiency of crops cultivated in the Mediterranean region: Review and analysis. European Journal of Agronomy 28(4): 493–507, doi: 10.1016/j.eja.2007.12.003
  • Katsoulas N, Kittas C (2011). Greenhouse Crop Transpiration Modelling. Evapotranspiration - From Measurements to Agricultural and Environmental Applications : 312–328, doi: 10.5772/991
  • Kumbur H (2002). Dünya, Türkiye, Ortadoğu Ülkelerinde Su Potansiyeli ve Karşılaşılan Sorunlar. Su Havzalarında Toprak ve Su Kaynaklarının Korunması, Geliştirilmesi ve Yönetimi Sempozyumu : 193–202.
  • Liu HJ, Cohen S, Tanny J, Lemcoff JH, Huang G (2008). Estimation of banana (Musa sp.) plant transpiration using a standard 20 cm pan in a greenhouse. Irrigation and Drainage Systems 22(3–4): 311–323, doi: 10.1007/s10795-008-9058-2
  • López-Cruz IL, Olivera-López M, Herrera-Ruiz G (2008). Sımulatıon of Greenhouse Tomato Crop Transpıratıon by Two Theoretıcal Models. Acta Horticulturae (797): 145–150, doi: 10.17660/ActaHortic.2008.797.18
  • Möller M, Assouline S (2007). Effects of a shading screen on microclimate and crop water requirements. Irrigation Science 25(2): 171–181, doi: 10.1007/s00271-006-0045-9
  • Monteith JL (1965). Evaporation and Environment. Symposia of the Society for Experimental Biology 19: 205–234, doi: 10.1613/jair.301
  • Orgaz F, Fernández MD, Bonachela S, Gallardo M, Fereres E (2005). Evapotranspiration of horticultural crops in an unheated plastic greenhouse. Agricultural Water Management 72(2): 81–96, doi: 10.1016/j.agwat.2004.09.010
  • Pamungkas AP, Hatou K, Morimoto T (2014). Evapotranspiration Model Analysis of Crop Water Use in Plant Factory System. Environmental Control in Biology 52(3): 183–188, doi: 10.2525/ecb.52.183
  • Penman HL (1948). Natural Evporation from Open Water, Bare Soil and Grass. The Royal Society 193(1032): 120–145, doi: 10.1098/rspa.1948.0037
  • Pollet S, Bleyaert P, Lemeur R (1999). Calculating The Evapotranspiration of Head Lettuce by Means of the Penman-Monteith Model. Bet Dagan.
  • Prenger JJ, Fynn RP, Hansen RC (2002). A Comparison of four evapotranspiration models in a greenhouse environment. Transactions of the ASAE 45(6): 1779–1788, doi: 10.13031/2013.11429
  • Priestley C, Taylor R (1972). On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Monthly Weather Review 100(2): 81–92, doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  • Rana G, Katerji N (2000). Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: A review. European Journal of Agronomy. pp 125–153, doi: 10.1016/S1161-0301(00)00070-8
  • Stanghellini C (1987). Transpiration of greenhouse crops an aid to climate management. Wageningen University, 150 pp.
  • Takakura T, Kubota C, Sase S, Hayashi M, Ishii M, Takayama K, Nishina H, Kurata K, Giacomelli GA (2009). Measurement of evapotranspiration rate in a single-span greenhouse using the energy-balance equation. Biosystems Engineering 102(3): 298–304, doi: 10.1016/j.biosystemseng.2008.12.004
  • Ucar Y, Kazaz S, Askin MA, Aydinsakir K, Kadayifci A, Senyigit U (2011). Determination of irrigation water amount and interval for carnation (Dianthus caryophyllus L.) with pan evaporation method. HortScience 46(1): 102–107.
  • Valdés-Gómez H, Ortega-Farías S, Argote M (2009) Evaluation of the Water Requirements for a Greenhouse Tomato Crop using the Priestley-Taylor Method . Chilean Journal of Agricultural Research 69(1): 3–11.
  • Villarreal-Guerrero F, Kacira M, Fitz-Rodríguez E, Linker R, Kubota C, Giacomelli GA, Arbel A (2012). Simulated performance of a greenhouse cooling control strategy with natural ventilation and fog cooling. Biosystems Engineering 111(2): 217–228, doi: 10.1016/j.biosystemseng.2011.11.015
  • Yang X, Short TH, Fox RD, Bauerle WL (1990). Transpiration, leaf temperature and stomatal resistance of a greenhouse cucumber crop. Agricultural and Forest Meteorology 51(3–4): 197–209, doi: 10.1016/0168-1923(90)90108-I
  • Zeng CZ, Bie ZL, Yuan BZ (2009). Determination of optimum irrigation water amount for drip-irrigated muskmelon (Cucumis melo L.) in plastic greenhouse. Agricultural Water Management 96(4): 595–602, doi: 10.1016/j.agwat.2008.09.019
Primary Language en
Subjects Engineering
Published Date 2018
Journal Section Articles
Authors

Author: Cİhan KARACA (Primary Author)
Institution: AKDENİZ ÜNİVERSİTESİ, ZİRAAT FAKÜLTESİ
Country: Turkey


Author: Ahmet TEZCAN
Institution: AKDENİZ ÜNİVERSİTESİ, ZİRAAT FAKÜLTESİ

Author: Kenan BÜYÜKTAŞ
Institution: AKDENİZ ÜNİVERSİTESİ, ZİRAAT FAKÜLTESİ

Author: Dursun BÜYÜKTAŞ
Institution: AKDENİZ ÜNİVERSİTESİ, ZİRAAT FAKÜLTESİ

Author: Ruhi BAŞTUĞ
Institution: AKDENİZ ÜNİVERSİTESİ, ZİRAAT FAKÜLTESİ

Dates

Publication Date: December 31, 2018

Bibtex @review { yyutbd427115, journal = {Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi}, issn = {1308-7576}, eissn = {1308-7584}, address = {Yuzuncu Yil University}, year = {2018}, volume = {28}, pages = {482 - 489}, doi = {10.29133/yyutbd.427115}, title = {Equations Developed to Estimate Evapotranspiration in Greenhouses}, key = {cite}, author = {KARACA, Cİhan and TEZCAN, Ahmet and BÜYÜKTAŞ, Kenan and BÜYÜKTAŞ, Dursun and BAŞTUĞ, Ruhi} }
APA KARACA, C , TEZCAN, A , BÜYÜKTAŞ, K , BÜYÜKTAŞ, D , BAŞTUĞ, R . (2018). Equations Developed to Estimate Evapotranspiration in Greenhouses. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 28 (4), 482-489. DOI: 10.29133/yyutbd.427115
MLA KARACA, C , TEZCAN, A , BÜYÜKTAŞ, K , BÜYÜKTAŞ, D , BAŞTUĞ, R . "Equations Developed to Estimate Evapotranspiration in Greenhouses". Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 28 (2018): 482-489 <http://dergipark.org.tr/yyutbd/issue/42150/427115>
Chicago KARACA, C , TEZCAN, A , BÜYÜKTAŞ, K , BÜYÜKTAŞ, D , BAŞTUĞ, R . "Equations Developed to Estimate Evapotranspiration in Greenhouses". Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 28 (2018): 482-489
RIS TY - JOUR T1 - Equations Developed to Estimate Evapotranspiration in Greenhouses AU - Cİhan KARACA , Ahmet TEZCAN , Kenan BÜYÜKTAŞ , Dursun BÜYÜKTAŞ , Ruhi BAŞTUĞ Y1 - 2018 PY - 2018 N1 - doi: 10.29133/yyutbd.427115 DO - 10.29133/yyutbd.427115 T2 - Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi JF - Journal JO - JOR SP - 482 EP - 489 VL - 28 IS - 4 SN - 1308-7576-1308-7584 M3 - doi: 10.29133/yyutbd.427115 UR - https://doi.org/10.29133/yyutbd.427115 Y2 - 2018 ER -
EndNote %0 Yuzuncu Yıl University Journal of Agricultural Sciences Equations Developed to Estimate Evapotranspiration in Greenhouses %A Cİhan KARACA , Ahmet TEZCAN , Kenan BÜYÜKTAŞ , Dursun BÜYÜKTAŞ , Ruhi BAŞTUĞ %T Equations Developed to Estimate Evapotranspiration in Greenhouses %D 2018 %J Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi %P 1308-7576-1308-7584 %V 28 %N 4 %R doi: 10.29133/yyutbd.427115 %U 10.29133/yyutbd.427115
ISNAD KARACA, Cİhan , TEZCAN, Ahmet , BÜYÜKTAŞ, Kenan , BÜYÜKTAŞ, Dursun , BAŞTUĞ, Ruhi . "Equations Developed to Estimate Evapotranspiration in Greenhouses". Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 28 / 4 (December 2019): 482-489. https://doi.org/10.29133/yyutbd.427115
AMA KARACA C , TEZCAN A , BÜYÜKTAŞ K , BÜYÜKTAŞ D , BAŞTUĞ R . Equations Developed to Estimate Evapotranspiration in Greenhouses. YYU J AGR SCI. 2018; 28(4): 482-489.
Vancouver KARACA C , TEZCAN A , BÜYÜKTAŞ K , BÜYÜKTAŞ D , BAŞTUĞ R . Equations Developed to Estimate Evapotranspiration in Greenhouses. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi. 2018; 28(4): 489-482.