Year 2019, Volume 29, Issue 1, Pages 94 - 105 2019-03-29

Konik Hüzmeli Poliasetal (POM) Pülverizatör Memelerinde Damla Kinematiği
Droplet Kinematic in Hollow Cone Polyacetal (POM) Sprayer Nozzles

Bahadır SAYINCI [1] , Ruçhan ÇÖMLEK [2] , Mustafa ÇOMAKLI [3]

40 174

Bu çalışmanın amacı, konik hüzmeli meme plakalarında orifis çapı, girdap plaketi ve püskürtme basıncı değişkenlerinin damla kinematiğini tanımlayan pülverizasyon karakteristiklerine olan etkisini belirlemektir. Denemelerde poliasetal malzemeden üretilmiş 1.0 mm, 1.2 mm, 1.6 mm, 2.0 mm ve 2.4 mm orifis çaplı meme plakaları ile mavi (2-slot), kahverengi (3-slot), sarı (2-slot) ve paslanmaz çelik (2-slot) girdap plaketleri kullanılmıştır. Tüm uygulamalar 2-12 bar püskürtme basıncı aralığında yapılmıştır. Meme plakası ve girdap plaketi kombinasyonlarda damla hızı 3.63-22.13 m/s aralığında değişmiş ve püskürtme basıncı arttıkça damla hızının da arttığı belirlenmiştir. Püskürtme basıncındaki artış damlanın kinetik enerjisini değiştirmemiştir. Ancak meme orifis çapı arttıkça damlanın sahip olduğu kinetik enerji azalmıştır. Püskürtme basıncı arttıkça damlanın terminal hızı azalırken, orifis çapındaki artış terminal hızın artmasını sağlamıştır. Püskürtme basıncı 2 bar olduğunda damlanın orifisten itibaren havada serbest kaldığı mesafe artmıştır. Meme orifis gruplarında püskürtme basıncı 2 bar olduğunda ortalama sürüklenme %8.5-%13.5 aralığında değişirken, 12 bar basınçta artarak ortalamalar %15.3-%19.9 aralığında değişmiştir. Konik hüzmeli memelerde damla kinematiğini tanımlayan değişkenler arasında korelasyon analizi yapılmış ve istatistiksel açıdan önemli bulunan değişkenler arasındaki ilişkiler eşitliklerle gösterilmiştir.

This study is aimed to determine the effect of orifice diameter, swirl plate and spray pressure variables on the spray characteristics which define the droplet kinematics of hollow cone nozzle plates. In the trials, the nozzle plates with 1.0 mm, 1.2 mm, 1.6 mm, 2.0 mm and 2.4 mm orifice diameter made of polyacetal material and blue (2-slot), brown (3-slot), yellow (2-slot) and stainless steel (2- slot) swirl plates were used. All applications were made in the spray pressure range of 2-12 bar. In the combinations with the nozzle plate and the swirl plate, the droplet velocity varied in the range of 3.63-22.13 m/s and the droplet velocity increased as the spray pressure increased. The increase in spray pressure had no any effect on variation of the kinetic energy of the drop. However, as the diameter of the nozzle orifice increased, the kinetic energy of the droplet decreased. As the spray pressure increased, the terminal velocity of the droplet decreased. But, increasing the orifice diameter of nozzle plates resulted in an increase in terminal velocity of drop. When the spray pressure is 2 bar, the distance from which the droplet is released in the air from the orifice has increased. The average drift in the nozzle orifice groups ranged from 8.5% to 13.5% when the pressure was 2 bar, while the average increase in the pressure of 12 bar ranged from 15.3% to 19.9%. Correlation analysis was performed between the variables that define the droplet kinematic in hollow cone nozzles and the relations between the statistically significant variables were shown with equations.

  • Al Heidary M, Douzals JP, Sinfort C, Vallet A (2014). Influence of nozzle type, nozzle arrangement and side wind speed on spray drift as measured in a wind tunnel. AgEng 2014, Jul 2014, Zurich, Switzerland.
  • Albuz® 2009. Disc&Core Ceramic Hollow-Cone Nozzle Catalogue. http://albuz-spray.com (Erişim tarihi: Aralık 2009).
  • Almekinders H, Ozkan HE, Reichard DL, Carpenter TG, Brazee RD (1993). Deposition efficiency of air-assisted, charged sprays in a wind tunnel. T. ASAE 36 (2): 321-325.
  • Arag® (2004). Nozzle Holder, Caps and Nozzle Tips Catalogue. www.aragnet.it. (Erişim tarihi: Aralık 2004)
  • Arag® (2017). Nozzle Holder, Caps and Nozzle Tips Catalogue (Revision). www.aragnet.com. (Erişim tarihi: Aralık 2017)
  • Bache DH, Johnstone DR (1992). Microclimate and spray dispersion. West Sussex, UK: Ellis Harwood.
  • Bode LE, Butler BJ, Pearson SL, Bouse LF (1983). Characteristics of the micromax rotary atomizer. T ASAE 24 (4): 999-1004.
  • Dursun E, Karahan Y, Çilingir İ (2000). Türkiye’de üretilen konik hüzmeli bazı meme plakalarında delik çapı ve düzgünlüğünün belirlenmesi. Tarım Bilimleri Dergisi 6 (3): 135-140.
  • Hipkins P, Grisso RB (2014). Droplet Chart / Selection Guide. Virginia Cooperative Extention, Virginia State University, Publication, 442-031.
  • Hypro® (2014). Hypro Nozzle Catalogue. http://www.hypro-eu.com. (Erişim tarihi: Aralık 2014)
  • Krishnan P, Williams TH, Kemble LJ (1988). Technical Note: Spray pattern displacement measurement technique for agricultural nozzles using spray table. T ASAE 31 (2): 386-389.
  • Kruger GR, Klein RN, Ogg CL (2013). Spray Drift of Pesticides. Nebreska Extention. http://extensionpublications.unl.edu/assets/html/g1773/build/g1773.htm.
  • Nuyttens D, Baetens K, Schampheleire M De, Sonck B (2007). Effect of nozzle type, size, and pressure on spray droplet characteristics. Biosyst. Eng. 97 (3): 333-345.
  • Piché M, Panneton, B, Thériault, R 2000. Field evaluation of air-assisted boom spraying on broccoli and potato. T. ASAE 43 (4): 793-799.
  • Sayıncı B, Çomaklı M (2017). Poliasetal (POM) Meme Plakalarında Püskürtme Açısına Etki Eden Faktörler ve Pülverizasyon Karakteristikleri. Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Tarım Makineleri Anabilim Dalı, Yüksek Lisans Tezi, Erzurum, s.78.
  • Sayıncı B, Kara M (2015). The effects of strainer types on flow characteristics of anti-drift (AD) and multi-range (LU) flat-fan nozzles. Tarım Bil. Derg. (J. Agr. Sci.) 21 (4): 558-571.
  • Sayıncı B (2014). Effect of filter types and sizes on flow characteristics of standard flat-fan nozzles. Tarım Mak. Bil. Derg. 10 (2): 129-138.
  • Sayıncı B (2015). Effect of strainer type, spray pressure, and orifice size on the discharge coefficient of standard flat-fan nozzles. Turkish J. Agr. Forestry 39: 692-704.
  • Sayıncı B (2016). The influence of strainer types on the flow and droplet velocity characteristics of ceramic flat-fan nozzles. Turkish J. Agr. Forestry 40: 25-37.
  • Serim AT, Özdemir YG (2012). Herbisit uygulamalarında kullanılan pülverizatör memelerinin damla büyüklük dağılımlarının belirlenmesi. Tar. Bil. Arş. Derg. 5 (2): 172-175.
  • Sidahmed MM, Awadalla HH, Haidar MA (2004). Symmetrical multi-foil shields for reducing spray drift. Biosyst. Eng. 88 (3): 305-312.
  • Spandl (2010). Comparing Drift Reduction Technology. Winfield Solutions, Shoreview, Minnesota. https://www.extension.umn.edu/agriculture/ag-professionals/cpm/2010.
  • Srivastava AK, Goering CE, Rohrbach RG (1993). Engineering Principles of Agricultural Machines. In: P.D. Hansen (Ed.), Chemical Application. Chapter 7, ASAE, Niles Road, St. Joseph, Michigan 49085, pp.265-324.
  • Teejet® (2014). Catalogue 51A-M, Disc-Core Type Cone Spray Tips. www.teejet.com.
  • Wolf (2017). Educating Applicators About Droplet Size. Wolf Consulting & Research LLC, https://tpsalliance.org/pdf/topics/Wolf-2-TPSA-2012.pdf (Erişim tarihi: Kasım 2017).
Primary Language tr
Subjects Science
Published Date 2019
Journal Section Articles
Authors

Orcid: 0000-0001-7148-0855
Author: Bahadır SAYINCI (Primary Author)
Institution: Mersin Üniversitesi
Country: Turkey


Orcid: 0000-0002-2240-4343
Author: Ruçhan ÇÖMLEK
Institution: Atatürk Üniversitesi
Country: Turkey


Orcid: 0000-0000-0000-1111
Author: Mustafa ÇOMAKLI
Institution: Atatürk Üniversitesi
Country: Turkey


Dates

Publication Date: March 29, 2019

Bibtex @research article { yyutbd494076, journal = {Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi}, issn = {1308-7576}, eissn = {1308-7584}, address = {Yuzuncu Yil University}, year = {2019}, volume = {29}, pages = {94 - 105}, doi = {10.29133/yyutbd.494076}, title = {Konik Hüzmeli Poliasetal (POM) Pülverizatör Memelerinde Damla Kinematiği}, key = {cite}, author = {SAYINCI, Bahadır and ÇÖMLEK, Ruçhan and ÇOMAKLI, Mustafa} }
APA SAYINCI, B , ÇÖMLEK, R , ÇOMAKLI, M . (2019). Konik Hüzmeli Poliasetal (POM) Pülverizatör Memelerinde Damla Kinematiği. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29 (1), 94-105. DOI: 10.29133/yyutbd.494076
MLA SAYINCI, B , ÇÖMLEK, R , ÇOMAKLI, M . "Konik Hüzmeli Poliasetal (POM) Pülverizatör Memelerinde Damla Kinematiği". Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 29 (2019): 94-105 <http://dergipark.org.tr/yyutbd/issue/44253/494076>
Chicago SAYINCI, B , ÇÖMLEK, R , ÇOMAKLI, M . "Konik Hüzmeli Poliasetal (POM) Pülverizatör Memelerinde Damla Kinematiği". Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 29 (2019): 94-105
RIS TY - JOUR T1 - Konik Hüzmeli Poliasetal (POM) Pülverizatör Memelerinde Damla Kinematiği AU - Bahadır SAYINCI , Ruçhan ÇÖMLEK , Mustafa ÇOMAKLI Y1 - 2019 PY - 2019 N1 - doi: 10.29133/yyutbd.494076 DO - 10.29133/yyutbd.494076 T2 - Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi JF - Journal JO - JOR SP - 94 EP - 105 VL - 29 IS - 1 SN - 1308-7576-1308-7584 M3 - doi: 10.29133/yyutbd.494076 UR - https://doi.org/10.29133/yyutbd.494076 Y2 - 2019 ER -
EndNote %0 Yuzuncu Yıl University Journal of Agricultural Sciences Konik Hüzmeli Poliasetal (POM) Pülverizatör Memelerinde Damla Kinematiği %A Bahadır SAYINCI , Ruçhan ÇÖMLEK , Mustafa ÇOMAKLI %T Konik Hüzmeli Poliasetal (POM) Pülverizatör Memelerinde Damla Kinematiği %D 2019 %J Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi %P 1308-7576-1308-7584 %V 29 %N 1 %R doi: 10.29133/yyutbd.494076 %U 10.29133/yyutbd.494076
ISNAD SAYINCI, Bahadır , ÇÖMLEK, Ruçhan , ÇOMAKLI, Mustafa . "Konik Hüzmeli Poliasetal (POM) Pülverizatör Memelerinde Damla Kinematiği". Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 29 / 1 (March 2019): 94-105. https://doi.org/10.29133/yyutbd.494076
AMA SAYINCI B , ÇÖMLEK R , ÇOMAKLI M . Konik Hüzmeli Poliasetal (POM) Pülverizatör Memelerinde Damla Kinematiği. YYU J AGR SCI. 2019; 29(1): 94-105.
Vancouver SAYINCI B , ÇÖMLEK R , ÇOMAKLI M . Konik Hüzmeli Poliasetal (POM) Pülverizatör Memelerinde Damla Kinematiği. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi. 2019; 29(1): 105-94.