Review
BibTex RIS Cite

FOTOVOLTAİK PANELLERDE VE PV/T SİSTEMLERDE FAZ DEĞİŞTİREN MADDE KULLLANILARAK ENERJİ DEPOLANMASININ DERLEME ÇALIŞMASI

Year 2022, Volume: 15 Issue: 1, 55 - 76, 06.07.2022
https://doi.org/10.20854/bujse.1071145

Abstract

Güneş enerjisi, diğer yenilenebilir enerji kaynaklarına kıyasla erişilebilirlik, uygulanabilirlik ve öngörülebilirlik gibi avantajlara sahiptir. Bu enerji kaynağı dünyada birçok amaç için kullanılmaktadır. Örneğin, fotovoltaik (FV) paneller ile güneş enerjisinden elektrik üretimi ısıtma veya soğutma gibi uygulamalar sağlanmaktadır. FV panel malzemesine, güneş ışınım miktarına ve çalışma sıcaklığı faktörlerine bağlı olarak panel performansları değişmektedir ve FV sistemlerde elektrik enerjisi dönüşümünde FV modülünün aşırı ısınması, güç üretiminin azalmasına ve verimin düşmesine neden olur. Bu nedenle FV panellerin soğutulması için soğutma yöntemleri kullanılmakta olup, bunlar pasif ve aktif olarak ikiye ayrılmaktadır. Bu çalışmada FV panellerin soğutulmasında kullanılan faz değiştiren malzemelerin (FDM) özellikleri verilmiştir. Ayrıca, FV panellerin sıcaklığını düşürmek için FDM kullanan çalışmalar ve termal enerjiden faydalanırken FDM kullanarak sistem verimliliği artıran deneysel ve sayısal çalışmalar verilmiştir. Yapılan çalışmalarda, FDM kullanıldığında FV panelin sıcaklığının düşürüldüğü ve buna bağlı olarak sistemin veriminin ve güç çıkışının arttırıldığı görülmüştür.

References

  • 1. Abdelrahman, H. E., Wahba, M. H., Refaey, H. A., Moawad, M. & Berbish, N. S. (2019). Performance enhancement of photovoltaic cells by changing configuration and using PCM (RT35HC) with nanoparticles Al2O3. Solar Energy, 177(October 2018), 665–671. https://doi.org/10.1016/j.solener.2018.11.022
  • 2. Abdulmunem, A. R., Mohd Samin, P., Abdul Rahman, H., Hussien, H. A., Izmi Mazali, I. & Ghazali, H. (2021). Numerical and experimental analysis of the tilt angle’s effects on the characteristics of the melting process of PCM-based as PV cell’s backside heat sink. Renewable Energy, 173, 520–530. https://doi.org/10.1016/j.renene.2021.04.014
  • 3. Akshayveer, Singh, A. P., Kumar, A. & Singh, O. P. (2019). Effect of natural convection and thermal storage system on the electrical and thermal performance of a hybrid PV-T/PCM systems. Materials Today: Proceedings, 39, 1899–1904. https://doi.org/10.1016/j.matpr.2020.08.010
  • 4. Atkin, P. & Farid, M. M. (2015). Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins. Solar Energy, 114, 217–228. https://doi.org/10.1016/j.solener.2015.01.037
  • 5. Bakir, E., Bayrak, F. & Öztop, H. (2021). Şebekeden Bağımsız Ev Tipi Uygulamaları için PCM Destekli PV/T Kollektörlerinin Deneysel Analizi. European Journal of Science and Technology, 23, 627–636. https://doi.org/10.31590/ejosat.841922
  • 6. Bayrak, F., Oztop, H. F. & Selimefendigil, F. (2020). Experimental study for the application of different cooling techniques in photovoltaic (PV) panels. Energy Conversion and Management, 212(February), 112789. https://doi.org/10.1016/j.enconman.2020.112789
  • 7. Brahim, T. & Jemni, A. (2017). Economical assessment and applications of photovoltaic/thermal hybrid solar technology: A review. Solar Energy, 153, 540–561. https://doi.org/10.1016/j.solener.2017.05.081
  • 8. Browne, M. C., Norton, B. & McCormack, S. J. (2016). Heat retention of a photovoltaic/thermal collector with PCM. Solar Energy, 133, 533–548. https://doi.org/10.1016/j.solener.2016.04.024
  • 9. Cabeza, L. F., Castell, A., Barreneche, C., De Gracia, A. & Fernández, A. I. (2011). Materials used as PCM in thermal energy storage in buildings: A review. Renewable and Sustainable Energy Reviews, 15(3), 1675–1695. https://doi.org/10.1016/j.rser.2010.11.018
  • 10. Cárdenas-Ramírez, C., Jaramillo, F. & Gómez, M. (2020). Systematic review of encapsulation and shape-stabilization of phase change materials. Journal of Energy Storage, 30(52), 101495. https://doi.org/10.1016/j.est.2020.101495
  • 11. Carmona, M., Palacio Bastos, A. & García, J. D. (2021). Experimental evaluation of a hybrid photovoltaic and thermal solar energy collector with integrated phase change material (PVT-PCM) in comparison with a traditional photovoltaic (PV) module. Renewable Energy, 172, 680–696. https://doi.org/10.1016/j.renene.2021.03.022
  • 12. Casini, M. (2016). Phase-change materials (Issue 11). https://doi.org/10.1016/B978-0-08-100635-1.00005-8
  • 13. Chandel, S. S. & Agarwal, T. (2017). Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials. Renewable and Sustainable Energy Reviews, 67, 581–596. https://doi.org/10.1016/j.rser.2016.09.070
  • 14. Elbreki, A. M., Alghoul, M. A., Al-Shamani, A. N., Ammar, A. A., Yegani, B., Aboghrara, A. M., Rusaln, M. H. & Sopian, K. (2016). The role of climatic-design-operational parameters on combined PV/T collector performance: A critical review. Renewable and Sustainable Energy Reviews, 57, 602–647. https://doi.org/10.1016/j.rser.2015.11.077
  • 15. Faraj, K., Khaled, M., Faraj, J., Hachem, F. & Castelain, C. (2021). A review on phase change materials for thermal energy storage in buildings: Heating and hybrid applications. Journal of Energy Storage, 33(September 2020), 101913. https://doi.org/10.1016/j.est.2020.101913
  • 16. Fayaz, H., Rahim, N. A., Hasanuzzaman, M., Rivai, A. & Nasrin, R. (2019). Numerical and outdoor real time experimental investigation of performance of PCM based PVT system. Solar Energy, 179(July 2018), 135–150. https://doi.org/10.1016/j.solener.2018.12.057
  • 17. Ghalambaz, M., Mehryan, S. A. M., Ayoubi Ayoubloo, K., Hajjar, A., Islam, M. S., Younis, O. & Aly, A. M. (2021). Thermal behavior and energy storage of a suspension of nano-encapsulated phase change materials in an enclosure. Advanced Powder Technology, 32(6), 2004–2019. https://doi.org/10.1016/j.apt.2021.04.008
  • 18. Haidar, Z. A., Orfi, J. & Kaneesamkandi, Z. (2018). Experimental investigation of evaporative cooling for enhancing photovoltaic panels efficiency. Results in Physics, 11(May), 690–697. https://doi.org/10.1016/j.rinp.2018.10.016
  • 19. Hasan, A., McCormack, S. J., Huang, M. J. & Norton, B. (2014). Characterization of phase change materials for thermal control of photovoltaics using Differential Scanning Calorimetry and Temperature History Method. Energy Conversion and Management, 81, 322–329. https://doi.org/10.1016/j.enconman.2014.02.042
  • 20. Hasan, A., Sarwar, J., Alnoman, H. & Abdelbaqi, S. (2017). Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate. Solar Energy, 146, 417–429. https://doi.org/10.1016/j.solener.2017.01.070
  • 21. Hasan, Ahmad, McCormack, S. J., Huang, M. J. & Norton, B. (2014). Energy and cost saving of a photovoltaic-phase change materials (PV-PCM) System through temperature regulation and performance enhancement of photovoltaics. Energies, 7(3), 1318–1331. https://doi.org/10.3390/en7031318
  • 22. Hossain, M. S., Pandey, A. K., Selvaraj, J., Rahim, N. A., Islam, M. M. & Tyagi, V. V. (2019). Two side serpentine flow based photovoltaic-thermal-phase change materials (PVT-PCM) system: Energy, exergy and economic analysis. Renewable Energy, 136, 1320–1336. https://doi.org/10.1016/j.renene.2018.10.097
  • 23. Huang, M. J., Eames, P. C. & Norton, B. (2004). Thermal regulation of building-integrated photovoltaics using phase change materials. International Journal of Heat and Mass Transfer, 47(12–13), 2715–2733. https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.015
  • 24. Huang, X., Chen, X., Li, A., Atinafu, D., Gao, H., Dong, W. & Wang, G. (2019). Shape-stabilized phase change materials based on porous supports for thermal energy storage applications. Chemical Engineering Journal, 356(August 2018), 641–661. https://doi.org/10.1016/j.cej.2018.09.013
  • 25. Islam, M. M., Pandey, A. K., Hasanuzzaman, M. & Rahim, N. A. (2016). Recent progresses and achievements in photovoltaic-phase change material technology: A review with special treatment on photovoltaic thermal-phase change material systems. Energy Conversion and Management, 126, 177–204. https://doi.org/10.1016/j.enconman.2016.07.075
  • 26. Jarimi, H., Abu Bakar, M. N., Othman, M. & Din, M. H. (2016). Bi-fluid photovoltaic/thermal (PV/T) solar collector: Experimental validation of a 2-D theoretical model. Renewable Energy, 85, 1052–1067. https://doi.org/10.1016/j.renene.2015.07.014
  • 27. Joshi, S. S. & Dhoble, A. S. (2018). Photovoltaic -Thermal systems (PVT): Technology review and future trends. Renewable and Sustainable Energy Reviews, 92(September 2017), 848–882. https://doi.org/10.1016/j.rser.2018.04.067
  • 28. Kant, K., Shukla, A., Sharma, A. & Biwole, P. H. (2016). Heat transfer studies of photovoltaic panel coupled with phase change material. Solar Energy, 140, 151–161. https://doi.org/10.1016/j.solener.2016.11.006
  • 29. Kenisarin, M. M. (2014). Thermophysical properties of some organic phase change materials for latent heat storage. A review. Solar Energy, 107, 553–575. https://doi.org/10.1016/j.solener.2014.05.001
  • 30. Khadiran, T., Hussein, M. Z., Zainal, Z. & Rusli, R. (2015). Encapsulation techniques for organic phase change materials as thermal energy storage medium: A review. Solar Energy Materials and Solar Cells, 143, 78–98. https://doi.org/10.1016/j.solmat.2015.06.039
  • 31. Kirilovs, Edgar;Zotova, Inga; Kukle, Silvija;Pugovičs, K. (2021). Low density hemp shive particleboards for latent thermal energy storage performance. Journal of Energy Systems, 5(1), 1–9. https://doi.org/10.30521/jes.805791
  • 32. Kumar, K. S., Revanth, S., Sanjeev, D., Kumar, P. S. & Surya, P. (2020). Experimental investigation of improving the energy conversion efficiency of PV cell by integrating with PCM. Materials Today: Proceedings, 37(Part 2), 712–716. https://doi.org/10.1016/j.matpr.2020.05.723
  • 33. Laghari, I. A., Samykano, M., Pandey, A. K., Kadirgama, K. & Tyagi, V. V. (2020). Advancements in PV-thermal systems with and without phase change materials as a sustainable energy solution: energy, exergy and exergoeconomic (3E) analytic approach. Sustainable Energy and Fuels, 4(10), 4956–4987. https://doi.org/10.1039/d0se00681e
  • 34. Lin, W., Ma, Z., Wang, S., Sohel, M. I. & Lo Cascio, E. (2021). Experimental investigation and two-level model-based optimisation of a solar photovoltaic thermal collector coupled with phase change material thermal energy storage. Applied Thermal Engineering, 182(September 2020), 116098. https://doi.org/10.1016/j.applthermaleng.2020.116098
  • 35. Lu, W., Liu, Z., Flor, J. F., Wu, Y. & Yang, M. (2018). Investigation on designed fins-enhanced phase change materials system for thermal management of a novel building integrated concentrating PV. Applied Energy, 225(March), 696–709. https://doi.org/10.1016/j.apenergy.2018.05.030
  • 36. Ma, T., Zhao, J. & Li, Z. (2018a). Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material. Applied Energy, 228(May), 1147–1158. https://doi.org/10.1016/j.apenergy.2018.06.145
  • 37. Ma, T., Zhao, J. & Li, Z. (2018b). Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material. Applied Energy, 228(May), 1147–1158. https://doi.org/10.1016/j.apenergy.2018.06.145
  • 38. Magendran, S. S., Khan, F. S. A., Mubarak, N. M., Vaka, M., Walvekar, R., Khalid, M., Abdullah, E. C., Nizamuddin, S. & Karri, R. R. (2019). Synthesis of organic phase change materials (PCM) for energy storage applications: A review. Nano-Structures and Nano-Objects, 20, 100399. https://doi.org/10.1016/j.nanoso.2019.100399
  • 39. Milián, Y. E., Gutiérrez, A., Grágeda, M. & Ushak, S. (2017). A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties. Renewable and Sustainable Energy Reviews, 73(June 2016), 983–999. https://doi.org/10.1016/j.rser.2017.01.159
  • 40. Mohamed, S. A., Al-Sulaiman, F. A., Ibrahim, N. I., Zahir, M. H., Al-Ahmed, A., Saidur, R., Yılbaş, B. S. & Sahin, A. Z. (2017). A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renewable and Sustainable Energy Reviews, 70(February 2016), 1072–1089. https://doi.org/10.1016/j.rser.2016.12.012
  • 41. Nižetić, S., Giama, E. & Papadopoulos, A. M. (2018). Comprehensive analysis and general economic-environmental evaluation of cooling techniques for photovoltaic panels, Part II: Active cooling techniques. Energy Conversion and Management, 155(October 2017), 301–323. https://doi.org/10.1016/j.enconman.2017.10.071
  • 42. Nižetić, S., Papadopoulos, A. M. & Giama, E. (2017). Comprehensive analysis and general economic-environmental evaluation of cooling techniques for photovoltaic panels, Part I: Passive cooling techniques. Energy Conversion and Management, 149, 334–354. https://doi.org/10.1016/j.enconman.2017.07.022
  • 43. Park, J., Kim, T. & Leigh, S. B. (2014). Application of a phase-change material to improve the electrical performance of vertical-building-added photovoltaics considering the annual weather conditions. Solar Energy, 105, 561–574. https://doi.org/10.1016/j.solener.2014.04.020
  • 44. Preet, S., Bhushan, B. & Mahajan, T. (2017). Experimental investigation of water based photovoltaic/thermal (PV/T) system with and without phase change material (PCM). Solar Energy, 155, 1104–1120. https://doi.org/10.1016/j.solener.2017.07.040
  • 45. Sahan, N. & Paksoy, H. O. (2014). Thermal enhancement of paraffin as a phase change material with nanomagnetite. Solar Energy Materials and Solar Cells, 126, 56–61. https://doi.org/10.1016/j.solmat.2014.03.018
  • 46. Sharma, A., Tyagi, V. V., Chen, C. R. & Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. In Renewable and Sustainable Energy Reviews (Vol. 13, Issue 2). https://doi.org/10.1016/j.rser.2007.10.005
  • 47. Shukla, A., Kant, K., Sharma, A. & Biwole, P. H. (2017). Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review. Solar Energy Materials and Solar Cells, 160(October 2016), 275–286. https://doi.org/10.1016/j.solmat.2016.10.047
  • 48. Siecker, J., Kusakana, K. & Numbi, B. P. (2017). A review of solar photovoltaic systems cooling technologies. Renewable and Sustainable Energy Reviews, 79(July 2016), 192–203. https://doi.org/10.1016/j.rser.2017.05.053
  • 49. Singh, P., Sharma, R. K., Ansu, A. K., Goyal, R., Sarı, A. & Tyagi, V. V. (2021). A comprehensive review on development of eutectic organic phase change materials and their composites for low and medium range thermal energy storage applications. Solar Energy Materials and Solar Cells, 223(January), 110955. https://doi.org/10.1016/j.solmat.2020.110955
  • 50. Stropnik, R. & Stritih, U. (2016). Increasing the efficiency of PV panel with the use of PCM. Renewable Energy, 97. https://doi.org/10.1016/j.renene.2016.06.011
  • 51. Su, D., Jia, Y., Alva, G., Liu, L. & Fang, G. (2017). Comparative analyses on dynamic performances of photovoltaic–thermal solar collectors integrated with phase change materials. Energy Conversion and Management, 131, 79–89. https://doi.org/10.1016/j.enconman.2016.11.002
  • 52. Sultan, S. M. & Ervina Efzan, M. N. (2018). Review on recent Photovoltaic/Thermal (PV/T) technology advances and applications. Solar Energy, 173(August), 939–954. https://doi.org/10.1016/j.solener.2018.08.032
  • 53. Tan, L., Date, A., Fernandes, G., Singh, B. & Ganguly, S. (2017). Efficiency Gains of Photovoltaic System Using Latent Heat Thermal Energy Storage. Energy Procedia, 110(December 2016), 83–88. https://doi.org/10.1016/j.egypro.2017.03.110
  • 54. Tao, M., Zhenpeng, L. & Jiaxin, Z. (2019). Photovoltaic panel integrated with phase change materials (PV-PCM): technology overview and materials selection. Renewable and Sustainable Energy Reviews, 116(September), 109406. https://doi.org/10.1016/j.rser.2019.109406
  • 55. Tariq, R., Xamán, J., Bassam, A., Ricalde, L. J. & Soberanis, M. A. E. (2020). Multidimensional assessment of a photovoltaic air collector integrated phase changing material considering Mexican climatic conditions. Energy, 209. https://doi.org/10.1016/j.energy.2020.118304
  • 56. Veerakumar, C. & Sreekumar, A. (2016). Phase change material based cold thermal energy storage: Materials, techniques and applications - A review. International Journal of Refrigeration, 67, 271–289. https://doi.org/10.1016/j.ijrefrig.2015.12.005
  • 57. Velmurugan, K., Kumarasamy, S., Wongwuttanasatian, T. & Seithtanabutara, V. (2021). Review of PCM types and suggestions for an applicable cascaded PCM for passive PV module cooling under tropical climate conditions. Journal of Cleaner Production, 293, 126065. https://doi.org/10.1016/j.jclepro.2021.126065
  • 58. Wei, G., Wang, G., Xu, C., Ju, X., Xing, L., Du, X. & Yang, Y. (2018). Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review. Renewable and Sustainable Energy Reviews, 81(March 2016), 1771–1786. https://doi.org/10.1016/j.rser.2017.05.271
  • 59. Yang, L., Jin, X., Zhang, Y. & Du, K. (2021). Recent development on heat transfer and various applications of phase-change materials. Journal of Cleaner Production, 287, 124432. https://doi.org/10.1016/j.jclepro.2020.124432
  • 60. Yang, X., Sun, L., Yuan, Y., Zhao, X. & Cao, X. (2018). Experimental investigation on performance comparison of PV/T-PCM system and PV/T system. Renewable Energy, 119, 152–159. https://doi.org/10.1016/j.renene.2017.11.094
  • 61. Yildiz, Gokhan.;Gurel, A. E. (2019). PV/T Sistemler: Tipleri, Avantajları ve Uygulamaları. November 2019.
  • 62. Zhou, D., Zhao, C. Y. & Tian, Y. (2012). Review on thermal energy storage with phase change materials (PCMs) in building applications. Applied Energy, 92, 593–605. https://doi.org/10.1016/j.apenergy.2011.08.025

A REVIEW OF PV COOLING AND THERMAL ENERGY STORAGE IN PV/T SYSTEMS BASED PHASE CHANGE MATERIALS

Year 2022, Volume: 15 Issue: 1, 55 - 76, 06.07.2022
https://doi.org/10.20854/bujse.1071145

Abstract

Solar energy has advantages such as accessibility, applicability and predictability compared to other renewable energy sources. This energy source is used for many purposes in the world. Photovoltaic panels provide applications such as generating electricity from solar energy or heating and cooling. Their performance changes depending on the PV panel material, the amount of solar radiation and the operating temperature factors. In the electrical energy conversion of PV systems, overheating of the PV module leads to a decrease in power generation and causes a decrease in efficiency. Therefore, there are cooling methods for cooling PV panels, and they are divided into passive and active. In this study, the properties of the phase change material (PCM) used in the cooling of PV panels are given. In addition, studies using PCM to reduce the temperature of PV panels and experimental and numerical studies that increase efficiency by using PCM for using thermal energy are discussed. In the studies, it has been seen that PCM reduces the temperature of the PV panel and increases the efficiency and power output data obtained when PCM is used.

References

  • 1. Abdelrahman, H. E., Wahba, M. H., Refaey, H. A., Moawad, M. & Berbish, N. S. (2019). Performance enhancement of photovoltaic cells by changing configuration and using PCM (RT35HC) with nanoparticles Al2O3. Solar Energy, 177(October 2018), 665–671. https://doi.org/10.1016/j.solener.2018.11.022
  • 2. Abdulmunem, A. R., Mohd Samin, P., Abdul Rahman, H., Hussien, H. A., Izmi Mazali, I. & Ghazali, H. (2021). Numerical and experimental analysis of the tilt angle’s effects on the characteristics of the melting process of PCM-based as PV cell’s backside heat sink. Renewable Energy, 173, 520–530. https://doi.org/10.1016/j.renene.2021.04.014
  • 3. Akshayveer, Singh, A. P., Kumar, A. & Singh, O. P. (2019). Effect of natural convection and thermal storage system on the electrical and thermal performance of a hybrid PV-T/PCM systems. Materials Today: Proceedings, 39, 1899–1904. https://doi.org/10.1016/j.matpr.2020.08.010
  • 4. Atkin, P. & Farid, M. M. (2015). Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins. Solar Energy, 114, 217–228. https://doi.org/10.1016/j.solener.2015.01.037
  • 5. Bakir, E., Bayrak, F. & Öztop, H. (2021). Şebekeden Bağımsız Ev Tipi Uygulamaları için PCM Destekli PV/T Kollektörlerinin Deneysel Analizi. European Journal of Science and Technology, 23, 627–636. https://doi.org/10.31590/ejosat.841922
  • 6. Bayrak, F., Oztop, H. F. & Selimefendigil, F. (2020). Experimental study for the application of different cooling techniques in photovoltaic (PV) panels. Energy Conversion and Management, 212(February), 112789. https://doi.org/10.1016/j.enconman.2020.112789
  • 7. Brahim, T. & Jemni, A. (2017). Economical assessment and applications of photovoltaic/thermal hybrid solar technology: A review. Solar Energy, 153, 540–561. https://doi.org/10.1016/j.solener.2017.05.081
  • 8. Browne, M. C., Norton, B. & McCormack, S. J. (2016). Heat retention of a photovoltaic/thermal collector with PCM. Solar Energy, 133, 533–548. https://doi.org/10.1016/j.solener.2016.04.024
  • 9. Cabeza, L. F., Castell, A., Barreneche, C., De Gracia, A. & Fernández, A. I. (2011). Materials used as PCM in thermal energy storage in buildings: A review. Renewable and Sustainable Energy Reviews, 15(3), 1675–1695. https://doi.org/10.1016/j.rser.2010.11.018
  • 10. Cárdenas-Ramírez, C., Jaramillo, F. & Gómez, M. (2020). Systematic review of encapsulation and shape-stabilization of phase change materials. Journal of Energy Storage, 30(52), 101495. https://doi.org/10.1016/j.est.2020.101495
  • 11. Carmona, M., Palacio Bastos, A. & García, J. D. (2021). Experimental evaluation of a hybrid photovoltaic and thermal solar energy collector with integrated phase change material (PVT-PCM) in comparison with a traditional photovoltaic (PV) module. Renewable Energy, 172, 680–696. https://doi.org/10.1016/j.renene.2021.03.022
  • 12. Casini, M. (2016). Phase-change materials (Issue 11). https://doi.org/10.1016/B978-0-08-100635-1.00005-8
  • 13. Chandel, S. S. & Agarwal, T. (2017). Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials. Renewable and Sustainable Energy Reviews, 67, 581–596. https://doi.org/10.1016/j.rser.2016.09.070
  • 14. Elbreki, A. M., Alghoul, M. A., Al-Shamani, A. N., Ammar, A. A., Yegani, B., Aboghrara, A. M., Rusaln, M. H. & Sopian, K. (2016). The role of climatic-design-operational parameters on combined PV/T collector performance: A critical review. Renewable and Sustainable Energy Reviews, 57, 602–647. https://doi.org/10.1016/j.rser.2015.11.077
  • 15. Faraj, K., Khaled, M., Faraj, J., Hachem, F. & Castelain, C. (2021). A review on phase change materials for thermal energy storage in buildings: Heating and hybrid applications. Journal of Energy Storage, 33(September 2020), 101913. https://doi.org/10.1016/j.est.2020.101913
  • 16. Fayaz, H., Rahim, N. A., Hasanuzzaman, M., Rivai, A. & Nasrin, R. (2019). Numerical and outdoor real time experimental investigation of performance of PCM based PVT system. Solar Energy, 179(July 2018), 135–150. https://doi.org/10.1016/j.solener.2018.12.057
  • 17. Ghalambaz, M., Mehryan, S. A. M., Ayoubi Ayoubloo, K., Hajjar, A., Islam, M. S., Younis, O. & Aly, A. M. (2021). Thermal behavior and energy storage of a suspension of nano-encapsulated phase change materials in an enclosure. Advanced Powder Technology, 32(6), 2004–2019. https://doi.org/10.1016/j.apt.2021.04.008
  • 18. Haidar, Z. A., Orfi, J. & Kaneesamkandi, Z. (2018). Experimental investigation of evaporative cooling for enhancing photovoltaic panels efficiency. Results in Physics, 11(May), 690–697. https://doi.org/10.1016/j.rinp.2018.10.016
  • 19. Hasan, A., McCormack, S. J., Huang, M. J. & Norton, B. (2014). Characterization of phase change materials for thermal control of photovoltaics using Differential Scanning Calorimetry and Temperature History Method. Energy Conversion and Management, 81, 322–329. https://doi.org/10.1016/j.enconman.2014.02.042
  • 20. Hasan, A., Sarwar, J., Alnoman, H. & Abdelbaqi, S. (2017). Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate. Solar Energy, 146, 417–429. https://doi.org/10.1016/j.solener.2017.01.070
  • 21. Hasan, Ahmad, McCormack, S. J., Huang, M. J. & Norton, B. (2014). Energy and cost saving of a photovoltaic-phase change materials (PV-PCM) System through temperature regulation and performance enhancement of photovoltaics. Energies, 7(3), 1318–1331. https://doi.org/10.3390/en7031318
  • 22. Hossain, M. S., Pandey, A. K., Selvaraj, J., Rahim, N. A., Islam, M. M. & Tyagi, V. V. (2019). Two side serpentine flow based photovoltaic-thermal-phase change materials (PVT-PCM) system: Energy, exergy and economic analysis. Renewable Energy, 136, 1320–1336. https://doi.org/10.1016/j.renene.2018.10.097
  • 23. Huang, M. J., Eames, P. C. & Norton, B. (2004). Thermal regulation of building-integrated photovoltaics using phase change materials. International Journal of Heat and Mass Transfer, 47(12–13), 2715–2733. https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.015
  • 24. Huang, X., Chen, X., Li, A., Atinafu, D., Gao, H., Dong, W. & Wang, G. (2019). Shape-stabilized phase change materials based on porous supports for thermal energy storage applications. Chemical Engineering Journal, 356(August 2018), 641–661. https://doi.org/10.1016/j.cej.2018.09.013
  • 25. Islam, M. M., Pandey, A. K., Hasanuzzaman, M. & Rahim, N. A. (2016). Recent progresses and achievements in photovoltaic-phase change material technology: A review with special treatment on photovoltaic thermal-phase change material systems. Energy Conversion and Management, 126, 177–204. https://doi.org/10.1016/j.enconman.2016.07.075
  • 26. Jarimi, H., Abu Bakar, M. N., Othman, M. & Din, M. H. (2016). Bi-fluid photovoltaic/thermal (PV/T) solar collector: Experimental validation of a 2-D theoretical model. Renewable Energy, 85, 1052–1067. https://doi.org/10.1016/j.renene.2015.07.014
  • 27. Joshi, S. S. & Dhoble, A. S. (2018). Photovoltaic -Thermal systems (PVT): Technology review and future trends. Renewable and Sustainable Energy Reviews, 92(September 2017), 848–882. https://doi.org/10.1016/j.rser.2018.04.067
  • 28. Kant, K., Shukla, A., Sharma, A. & Biwole, P. H. (2016). Heat transfer studies of photovoltaic panel coupled with phase change material. Solar Energy, 140, 151–161. https://doi.org/10.1016/j.solener.2016.11.006
  • 29. Kenisarin, M. M. (2014). Thermophysical properties of some organic phase change materials for latent heat storage. A review. Solar Energy, 107, 553–575. https://doi.org/10.1016/j.solener.2014.05.001
  • 30. Khadiran, T., Hussein, M. Z., Zainal, Z. & Rusli, R. (2015). Encapsulation techniques for organic phase change materials as thermal energy storage medium: A review. Solar Energy Materials and Solar Cells, 143, 78–98. https://doi.org/10.1016/j.solmat.2015.06.039
  • 31. Kirilovs, Edgar;Zotova, Inga; Kukle, Silvija;Pugovičs, K. (2021). Low density hemp shive particleboards for latent thermal energy storage performance. Journal of Energy Systems, 5(1), 1–9. https://doi.org/10.30521/jes.805791
  • 32. Kumar, K. S., Revanth, S., Sanjeev, D., Kumar, P. S. & Surya, P. (2020). Experimental investigation of improving the energy conversion efficiency of PV cell by integrating with PCM. Materials Today: Proceedings, 37(Part 2), 712–716. https://doi.org/10.1016/j.matpr.2020.05.723
  • 33. Laghari, I. A., Samykano, M., Pandey, A. K., Kadirgama, K. & Tyagi, V. V. (2020). Advancements in PV-thermal systems with and without phase change materials as a sustainable energy solution: energy, exergy and exergoeconomic (3E) analytic approach. Sustainable Energy and Fuels, 4(10), 4956–4987. https://doi.org/10.1039/d0se00681e
  • 34. Lin, W., Ma, Z., Wang, S., Sohel, M. I. & Lo Cascio, E. (2021). Experimental investigation and two-level model-based optimisation of a solar photovoltaic thermal collector coupled with phase change material thermal energy storage. Applied Thermal Engineering, 182(September 2020), 116098. https://doi.org/10.1016/j.applthermaleng.2020.116098
  • 35. Lu, W., Liu, Z., Flor, J. F., Wu, Y. & Yang, M. (2018). Investigation on designed fins-enhanced phase change materials system for thermal management of a novel building integrated concentrating PV. Applied Energy, 225(March), 696–709. https://doi.org/10.1016/j.apenergy.2018.05.030
  • 36. Ma, T., Zhao, J. & Li, Z. (2018a). Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material. Applied Energy, 228(May), 1147–1158. https://doi.org/10.1016/j.apenergy.2018.06.145
  • 37. Ma, T., Zhao, J. & Li, Z. (2018b). Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material. Applied Energy, 228(May), 1147–1158. https://doi.org/10.1016/j.apenergy.2018.06.145
  • 38. Magendran, S. S., Khan, F. S. A., Mubarak, N. M., Vaka, M., Walvekar, R., Khalid, M., Abdullah, E. C., Nizamuddin, S. & Karri, R. R. (2019). Synthesis of organic phase change materials (PCM) for energy storage applications: A review. Nano-Structures and Nano-Objects, 20, 100399. https://doi.org/10.1016/j.nanoso.2019.100399
  • 39. Milián, Y. E., Gutiérrez, A., Grágeda, M. & Ushak, S. (2017). A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties. Renewable and Sustainable Energy Reviews, 73(June 2016), 983–999. https://doi.org/10.1016/j.rser.2017.01.159
  • 40. Mohamed, S. A., Al-Sulaiman, F. A., Ibrahim, N. I., Zahir, M. H., Al-Ahmed, A., Saidur, R., Yılbaş, B. S. & Sahin, A. Z. (2017). A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renewable and Sustainable Energy Reviews, 70(February 2016), 1072–1089. https://doi.org/10.1016/j.rser.2016.12.012
  • 41. Nižetić, S., Giama, E. & Papadopoulos, A. M. (2018). Comprehensive analysis and general economic-environmental evaluation of cooling techniques for photovoltaic panels, Part II: Active cooling techniques. Energy Conversion and Management, 155(October 2017), 301–323. https://doi.org/10.1016/j.enconman.2017.10.071
  • 42. Nižetić, S., Papadopoulos, A. M. & Giama, E. (2017). Comprehensive analysis and general economic-environmental evaluation of cooling techniques for photovoltaic panels, Part I: Passive cooling techniques. Energy Conversion and Management, 149, 334–354. https://doi.org/10.1016/j.enconman.2017.07.022
  • 43. Park, J., Kim, T. & Leigh, S. B. (2014). Application of a phase-change material to improve the electrical performance of vertical-building-added photovoltaics considering the annual weather conditions. Solar Energy, 105, 561–574. https://doi.org/10.1016/j.solener.2014.04.020
  • 44. Preet, S., Bhushan, B. & Mahajan, T. (2017). Experimental investigation of water based photovoltaic/thermal (PV/T) system with and without phase change material (PCM). Solar Energy, 155, 1104–1120. https://doi.org/10.1016/j.solener.2017.07.040
  • 45. Sahan, N. & Paksoy, H. O. (2014). Thermal enhancement of paraffin as a phase change material with nanomagnetite. Solar Energy Materials and Solar Cells, 126, 56–61. https://doi.org/10.1016/j.solmat.2014.03.018
  • 46. Sharma, A., Tyagi, V. V., Chen, C. R. & Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. In Renewable and Sustainable Energy Reviews (Vol. 13, Issue 2). https://doi.org/10.1016/j.rser.2007.10.005
  • 47. Shukla, A., Kant, K., Sharma, A. & Biwole, P. H. (2017). Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review. Solar Energy Materials and Solar Cells, 160(October 2016), 275–286. https://doi.org/10.1016/j.solmat.2016.10.047
  • 48. Siecker, J., Kusakana, K. & Numbi, B. P. (2017). A review of solar photovoltaic systems cooling technologies. Renewable and Sustainable Energy Reviews, 79(July 2016), 192–203. https://doi.org/10.1016/j.rser.2017.05.053
  • 49. Singh, P., Sharma, R. K., Ansu, A. K., Goyal, R., Sarı, A. & Tyagi, V. V. (2021). A comprehensive review on development of eutectic organic phase change materials and their composites for low and medium range thermal energy storage applications. Solar Energy Materials and Solar Cells, 223(January), 110955. https://doi.org/10.1016/j.solmat.2020.110955
  • 50. Stropnik, R. & Stritih, U. (2016). Increasing the efficiency of PV panel with the use of PCM. Renewable Energy, 97. https://doi.org/10.1016/j.renene.2016.06.011
  • 51. Su, D., Jia, Y., Alva, G., Liu, L. & Fang, G. (2017). Comparative analyses on dynamic performances of photovoltaic–thermal solar collectors integrated with phase change materials. Energy Conversion and Management, 131, 79–89. https://doi.org/10.1016/j.enconman.2016.11.002
  • 52. Sultan, S. M. & Ervina Efzan, M. N. (2018). Review on recent Photovoltaic/Thermal (PV/T) technology advances and applications. Solar Energy, 173(August), 939–954. https://doi.org/10.1016/j.solener.2018.08.032
  • 53. Tan, L., Date, A., Fernandes, G., Singh, B. & Ganguly, S. (2017). Efficiency Gains of Photovoltaic System Using Latent Heat Thermal Energy Storage. Energy Procedia, 110(December 2016), 83–88. https://doi.org/10.1016/j.egypro.2017.03.110
  • 54. Tao, M., Zhenpeng, L. & Jiaxin, Z. (2019). Photovoltaic panel integrated with phase change materials (PV-PCM): technology overview and materials selection. Renewable and Sustainable Energy Reviews, 116(September), 109406. https://doi.org/10.1016/j.rser.2019.109406
  • 55. Tariq, R., Xamán, J., Bassam, A., Ricalde, L. J. & Soberanis, M. A. E. (2020). Multidimensional assessment of a photovoltaic air collector integrated phase changing material considering Mexican climatic conditions. Energy, 209. https://doi.org/10.1016/j.energy.2020.118304
  • 56. Veerakumar, C. & Sreekumar, A. (2016). Phase change material based cold thermal energy storage: Materials, techniques and applications - A review. International Journal of Refrigeration, 67, 271–289. https://doi.org/10.1016/j.ijrefrig.2015.12.005
  • 57. Velmurugan, K., Kumarasamy, S., Wongwuttanasatian, T. & Seithtanabutara, V. (2021). Review of PCM types and suggestions for an applicable cascaded PCM for passive PV module cooling under tropical climate conditions. Journal of Cleaner Production, 293, 126065. https://doi.org/10.1016/j.jclepro.2021.126065
  • 58. Wei, G., Wang, G., Xu, C., Ju, X., Xing, L., Du, X. & Yang, Y. (2018). Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review. Renewable and Sustainable Energy Reviews, 81(March 2016), 1771–1786. https://doi.org/10.1016/j.rser.2017.05.271
  • 59. Yang, L., Jin, X., Zhang, Y. & Du, K. (2021). Recent development on heat transfer and various applications of phase-change materials. Journal of Cleaner Production, 287, 124432. https://doi.org/10.1016/j.jclepro.2020.124432
  • 60. Yang, X., Sun, L., Yuan, Y., Zhao, X. & Cao, X. (2018). Experimental investigation on performance comparison of PV/T-PCM system and PV/T system. Renewable Energy, 119, 152–159. https://doi.org/10.1016/j.renene.2017.11.094
  • 61. Yildiz, Gokhan.;Gurel, A. E. (2019). PV/T Sistemler: Tipleri, Avantajları ve Uygulamaları. November 2019.
  • 62. Zhou, D., Zhao, C. Y. & Tian, Y. (2012). Review on thermal energy storage with phase change materials (PCMs) in building applications. Applied Energy, 92, 593–605. https://doi.org/10.1016/j.apenergy.2011.08.025
There are 62 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ecem Şen 0000-0001-9852-9348

Melih Soner Çeliktaş 0000-0003-0597-5133

Publication Date July 6, 2022
Published in Issue Year 2022 Volume: 15 Issue: 1

Cite

APA Şen, E., & Çeliktaş, M. S. (2022). A REVIEW OF PV COOLING AND THERMAL ENERGY STORAGE IN PV/T SYSTEMS BASED PHASE CHANGE MATERIALS. Beykent Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 15(1), 55-76. https://doi.org/10.20854/bujse.1071145
AMA Şen E, Çeliktaş MS. A REVIEW OF PV COOLING AND THERMAL ENERGY STORAGE IN PV/T SYSTEMS BASED PHASE CHANGE MATERIALS. BUJSE. July 2022;15(1):55-76. doi:10.20854/bujse.1071145
Chicago Şen, Ecem, and Melih Soner Çeliktaş. “A REVIEW OF PV COOLING AND THERMAL ENERGY STORAGE IN PV/T SYSTEMS BASED PHASE CHANGE MATERIALS”. Beykent Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 15, no. 1 (July 2022): 55-76. https://doi.org/10.20854/bujse.1071145.
EndNote Şen E, Çeliktaş MS (July 1, 2022) A REVIEW OF PV COOLING AND THERMAL ENERGY STORAGE IN PV/T SYSTEMS BASED PHASE CHANGE MATERIALS. Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 15 1 55–76.
IEEE E. Şen and M. S. Çeliktaş, “A REVIEW OF PV COOLING AND THERMAL ENERGY STORAGE IN PV/T SYSTEMS BASED PHASE CHANGE MATERIALS”, BUJSE, vol. 15, no. 1, pp. 55–76, 2022, doi: 10.20854/bujse.1071145.
ISNAD Şen, Ecem - Çeliktaş, Melih Soner. “A REVIEW OF PV COOLING AND THERMAL ENERGY STORAGE IN PV/T SYSTEMS BASED PHASE CHANGE MATERIALS”. Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 15/1 (July 2022), 55-76. https://doi.org/10.20854/bujse.1071145.
JAMA Şen E, Çeliktaş MS. A REVIEW OF PV COOLING AND THERMAL ENERGY STORAGE IN PV/T SYSTEMS BASED PHASE CHANGE MATERIALS. BUJSE. 2022;15:55–76.
MLA Şen, Ecem and Melih Soner Çeliktaş. “A REVIEW OF PV COOLING AND THERMAL ENERGY STORAGE IN PV/T SYSTEMS BASED PHASE CHANGE MATERIALS”. Beykent Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 15, no. 1, 2022, pp. 55-76, doi:10.20854/bujse.1071145.
Vancouver Şen E, Çeliktaş MS. A REVIEW OF PV COOLING AND THERMAL ENERGY STORAGE IN PV/T SYSTEMS BASED PHASE CHANGE MATERIALS. BUJSE. 2022;15(1):55-76.