Conference Paper
BibTex RIS Cite
Year 2013, Volume: 26 Issue: 4, 527 - 534, 02.01.2014

Abstract

References

  • Farouki, R.T. and Rajan, V.T., Algorithms for polynomials in Bernstein form, Computer Aided Geometric Design, 5: 1-26, (1988).
  • Farin, G., Curves and surfaces for CAGD fifth edition, Academic Press, United States of America, (2002).
  • Bhatti, M.I. and Bracken, P., Solutions of differential equations in a Bernstein polynomial basis, Journal of Computational and Applied Mathematics, 205: 272-280, (2007).
  • Doha, E.H., Bhrawy, A.H. and Saker, M.A., On the derivatives of Bernstein polynomials: An application for the solution of high even-order differential equations, Boundary Value Problems, 2011: 1-16, (2011).
  • Doha, E. H., Bhrawy, A. H. and Saker, M. A., Integrals of Bernstein polynomials: An application for the solution of high even-order differential equations, Applied Mathematics Letters, 24: 559- 565, (2011).
  • Işık, O.R., Sezer, M. and Güney, Z., A Rational approximation based on Bernstein polynomials for high order initial and boundary value problems, Applied Mathematics and Computation, 217: 9438-9450, (2011).
  • Işık, O.R., Güney, Z. and Sezer, M., Bernstein series solutions of pantograph equations using polynomial interpolation, Journal of Difference Equations and Applications, 18: 357-374, (2010).
  • Ordokhani, Y. and Davaei far, S., Approximate solutions of differential equations by using the Bernstein polynomials, International Scholarly Research Network ISRN Applied Mathematics, 2011: 1-15, (2011).
  • Bhattacharya, S. and Mandal, B.N., Use of Bernstein polynomials in numerical solutions of Volterra integral equations, Applied Mathematical Sciences, 2: 1773-1787, (2008).
  • Shirin, A. and Islam, A.S., Numerical solutions of Fredholm integral equations using Bernstein polynomials, Journal of Scientific Research, 2: 264-272, (2010).
  • Bhatta, D.D. and Bhatti, M.I, Numerical Solution of KdV equation using modified Bernstein polynomials, Computation, 174: 1255-1268, (2006). Mathematics and
  • Stewart, G.W., Matrix algorithms volume I: Basic decompositions, SIAM, Philadelphia, (1998).
  • Yousefi, S.A. and Dehghan, B.M., Bernstein Ritz- Galerkin method for solving an initial-boundary value problem that combines Neumann and integral condition for the wave equation, Numerical Methods for Partial Differential Equations, 26: 1236-1246, (2009).
  • Bhattacharya, S. and Mandal, B.N., Numerical solution of a singular integro- differential equation, Applied Mathematics and Computation, 195: 346- 350, (2008).
  • Lorentz, G.G., Bernstein polynomials, Chelsea Publishing, New York, N.Y., (1986).
  • Rivlin, T.J., An introduction to the approximation of functions, Dover Publications, N.Y., (2003).
  • Siddiqi, S.S. and Akram, G., Septic spline solutions of sixth-order boundary value problems, Journal Mathematics, 215: 288-301, (2008). and Applied
  • El-Gamel, M., Cannon, J.R. and Zayed, A.I., Sinc- Galerkin method for solving linear sixth-order boundary value problems, Mathematics and Computation, 73: 1325-1343, (2003).

Bernstein Collocation Method for Solving Linear Differential Equations

Year 2013, Volume: 26 Issue: 4, 527 - 534, 02.01.2014

Abstract

In this study, a new collocation method based on Bernstein polynomials defined on the interval [a, b] is introduced for approximate solutions of initial and boundary value problems involving higher order linear differential equations with variable coefficients. Error analysis of the method is demonstrated. Some numerical solutions are given to illustrate the accuracy, efficiency and implementation of the method, and the results of the proposed method are also compared with the other methods in several examples.

References

  • Farouki, R.T. and Rajan, V.T., Algorithms for polynomials in Bernstein form, Computer Aided Geometric Design, 5: 1-26, (1988).
  • Farin, G., Curves and surfaces for CAGD fifth edition, Academic Press, United States of America, (2002).
  • Bhatti, M.I. and Bracken, P., Solutions of differential equations in a Bernstein polynomial basis, Journal of Computational and Applied Mathematics, 205: 272-280, (2007).
  • Doha, E.H., Bhrawy, A.H. and Saker, M.A., On the derivatives of Bernstein polynomials: An application for the solution of high even-order differential equations, Boundary Value Problems, 2011: 1-16, (2011).
  • Doha, E. H., Bhrawy, A. H. and Saker, M. A., Integrals of Bernstein polynomials: An application for the solution of high even-order differential equations, Applied Mathematics Letters, 24: 559- 565, (2011).
  • Işık, O.R., Sezer, M. and Güney, Z., A Rational approximation based on Bernstein polynomials for high order initial and boundary value problems, Applied Mathematics and Computation, 217: 9438-9450, (2011).
  • Işık, O.R., Güney, Z. and Sezer, M., Bernstein series solutions of pantograph equations using polynomial interpolation, Journal of Difference Equations and Applications, 18: 357-374, (2010).
  • Ordokhani, Y. and Davaei far, S., Approximate solutions of differential equations by using the Bernstein polynomials, International Scholarly Research Network ISRN Applied Mathematics, 2011: 1-15, (2011).
  • Bhattacharya, S. and Mandal, B.N., Use of Bernstein polynomials in numerical solutions of Volterra integral equations, Applied Mathematical Sciences, 2: 1773-1787, (2008).
  • Shirin, A. and Islam, A.S., Numerical solutions of Fredholm integral equations using Bernstein polynomials, Journal of Scientific Research, 2: 264-272, (2010).
  • Bhatta, D.D. and Bhatti, M.I, Numerical Solution of KdV equation using modified Bernstein polynomials, Computation, 174: 1255-1268, (2006). Mathematics and
  • Stewart, G.W., Matrix algorithms volume I: Basic decompositions, SIAM, Philadelphia, (1998).
  • Yousefi, S.A. and Dehghan, B.M., Bernstein Ritz- Galerkin method for solving an initial-boundary value problem that combines Neumann and integral condition for the wave equation, Numerical Methods for Partial Differential Equations, 26: 1236-1246, (2009).
  • Bhattacharya, S. and Mandal, B.N., Numerical solution of a singular integro- differential equation, Applied Mathematics and Computation, 195: 346- 350, (2008).
  • Lorentz, G.G., Bernstein polynomials, Chelsea Publishing, New York, N.Y., (1986).
  • Rivlin, T.J., An introduction to the approximation of functions, Dover Publications, N.Y., (2003).
  • Siddiqi, S.S. and Akram, G., Septic spline solutions of sixth-order boundary value problems, Journal Mathematics, 215: 288-301, (2008). and Applied
  • El-Gamel, M., Cannon, J.R. and Zayed, A.I., Sinc- Galerkin method for solving linear sixth-order boundary value problems, Mathematics and Computation, 73: 1325-1343, (2003).
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Mathematics
Authors

Ayşegül Daşçıoğlu

Neşe Acar This is me

Publication Date January 2, 2014
Published in Issue Year 2013 Volume: 26 Issue: 4

Cite

APA Daşçıoğlu, A., & Acar, N. (2014). Bernstein Collocation Method for Solving Linear Differential Equations. Gazi University Journal of Science, 26(4), 527-534.
AMA Daşçıoğlu A, Acar N. Bernstein Collocation Method for Solving Linear Differential Equations. Gazi University Journal of Science. January 2014;26(4):527-534.
Chicago Daşçıoğlu, Ayşegül, and Neşe Acar. “Bernstein Collocation Method for Solving Linear Differential Equations”. Gazi University Journal of Science 26, no. 4 (January 2014): 527-34.
EndNote Daşçıoğlu A, Acar N (January 1, 2014) Bernstein Collocation Method for Solving Linear Differential Equations. Gazi University Journal of Science 26 4 527–534.
IEEE A. Daşçıoğlu and N. Acar, “Bernstein Collocation Method for Solving Linear Differential Equations”, Gazi University Journal of Science, vol. 26, no. 4, pp. 527–534, 2014.
ISNAD Daşçıoğlu, Ayşegül - Acar, Neşe. “Bernstein Collocation Method for Solving Linear Differential Equations”. Gazi University Journal of Science 26/4 (January 2014), 527-534.
JAMA Daşçıoğlu A, Acar N. Bernstein Collocation Method for Solving Linear Differential Equations. Gazi University Journal of Science. 2014;26:527–534.
MLA Daşçıoğlu, Ayşegül and Neşe Acar. “Bernstein Collocation Method for Solving Linear Differential Equations”. Gazi University Journal of Science, vol. 26, no. 4, 2014, pp. 527-34.
Vancouver Daşçıoğlu A, Acar N. Bernstein Collocation Method for Solving Linear Differential Equations. Gazi University Journal of Science. 2014;26(4):527-34.