Research Article
BibTex RIS Cite

Üzüm (Vitis vinifera L.) Çeşitlerine Ait 49 Adet Salkım İskeletinin Toplam Fenolik Bileşik ve Trans-Resveratrol Düzeyleri

Year 2020, Volume: 24 Issue: 2, 222 - 228, 24.06.2020
https://doi.org/10.29050/harranziraat.651668

Abstract

Üzüm çekirdekleri, kabukları ve şarabın insan sağlığına olan etkileri ile ilgili çok yoğun araştırma gerçekleştirilmesine rağmen salkım iskeletleri ile ilgili yok denecek kadar az çalışma bulunmaktadır. Bu araştırmanın temel amacı 49 adet Vitis vinifera L. çeşidine ait salkım iskeletlerinin toplam fenolik bileşik (TFB), trans-resveratrol, kateşin ve epikateşin düzeylerinin belirlenmesidir. TFB düzeyi 17025-123250 mg GAE kg-1 kuru ağırlık, trans-resveratrol düzeyi 23.44-70.38, kateşin düzeyi 843-14144 ve epikateşin düzeyi 0-981 mg kg-1 kuru ağırlık aralıklarında belirlenmiştir. Sonuçlar doğrultusunda gelecek araştırmalarla üzüm salkım iskeletlerinin insan sağlığı açısından önemli biyoaktiviteye sahip oldukları ve biyofonksiyonel gıda ya da gıda takviyesi olarak kullanılabileceği sonucuna varılmıştır.

Supporting Institution

Ankara Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

11B4347003

Thanks

"11B4347003" kod numaralı ve "Ülkemizde Yetiştirilen Asma Tür ve Çeşitlerinde Antioksidan, Resveratrol ve Diğer Fenolik Bileşiklerin Belirlenmesi Üzerinde Bir Araştırma" isimli projeye sağladığı destek için "Ankara Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü" ne teşekkürlerimizi sunarız.

References

  • Anastasiadi, M., Pratsinis, H., Kletsas, D., Skaltsounis, A.L., Haroutounian, S.A. (2012). Grape stem extracts: Polyphenolic content and assessment of their in vitro antioxidant properties. LWT - Food Science and Technology, 48, 316-322.
  • Anonim 2019. http://www.fao.org/faostat/en/. Erişim tarihi: 01.10.2019.
  • Apostolou, A., Stagos, D., Galitsiou, E., Spyrou, A., Haroutounian, S., Portesis, N., Trizoglou, I., Hayes, A.W., Tsatsakis, A.M. & Kouretas, D. (2013). Assessment of polyphenolic content, antioxidant activity, protection against ROS-induced DNA damage and anticancer activity of Vitis vinifera stem extracts. Food and Chemical Toxicology, 61, 60–68.
  • Boocock, D.J., Faust, G.E.S., Patel, K.R., Schinas, A.M., Brown, V.A., Ducharme, M.P., Booth, T.D., Crowell, J.A., Perloff, M., Gescher, A.J. (2007). Phase i dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiology Biomarkers and Preventetion, 16, 1246–1253.
  • Che, D.N., Xie, G.H., Cho, B.O., Shin, J.Y., Kang, H.J., Jang, S.I. (2017). Protective effects of grape stem extract against UVB-induced damage in C57BL mice skin. Journal of Photochemistry and Photobiology B: Biology, 173, 551–559.
  • Del Rio, D., Rodriguez-Mateos, A., Spencer, J.P.E., Tognolini, M., Borges, G., Crozier, A. (2013). Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases. Antioxidants and Redox Signaling, 18, 1818–1892.
  • Gambini, J., Inglés, M., Olaso, G., Lopez-Grueso, R., Bonet-Costa, V., Gimeno-Mallench, L., Mas-Bargues, C., Abdelaziz, K.M., Gomez-Cabrera, M.C., Vina, J., Borras, C. (2015). Properties of resveratrol: In vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxidative Medicine and Cellular Longevity, 1–13.
  • Martínez-Huélamo, M., Vallverdú-Queralt, A., Di Lecce, G., Valderas-Martínez, P., Tulipani, S., Jáuregui, O., Escribano-Ferrer, E., Estruch, R., Illan, M., Lamuela-Raventós, R.M. (2016). Bioavailability of tomato polyphenols is enhanced by processing and fat addition: Evidence from a randomized feeding trial. Molecular Nutrition and Food Research, 60, 1578–1589.
  • Ramírez‐Garza, S. L., Laveriano‐Santos, E. P., Marhuenda‐Muñoz, M., Storniolo, C. E., Tresserra‐Rimbau, A., Vallverdú‐Queralt, A., Lamuela‐Raventós, R. M. (2018). Health effects of resveratrol: Results from human intervention trials. Nutrients, 10( 12).
  • Singleton, V.L., Rossi, J.J.A. (1965). Colorimetric of totalmphenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3): 144-158.
  • Spigno, G., De Faveri, D. M. (2007). Antioxidants from grape stalks and marc: Influence of extraction procedure on yield, purity and antioxidant power of the extracts. Journal of Food Engineering, 78, 793-801.
  • Stagos, D., Kazantzoglou, G., Theofanidou, D., Kakalopoulou, G., Magiatis, P.,Mitaku, S., Kouretas, D., 2006. Activity of grape extracts from Greek vari-eties ofVitis viniferaagainst mutagenicity induced by bleomycin and hydrogenperoxide in Salmonella typhimurium strain TA102. Mutat. Res. 609 (2),165–175.
  • Vázquez-Armenta, F.J., Silva-Espinoza, B.A., Cruz-Valenzuela, M.R., González Aguilar, G.A., Nazzaro, F., Fratianni, F. (2017). Antibacterial and antioxidant properties of grape stem extract applied as disinfectant in fresh leafy vegetables. Journal of Food Science & Technology, 54 (10), 3192-3200.
  • Waterhouse, A.L. (2005). Determination of total fenolics, in Handbook of Food Analytical Chemistry, ed. by Wrolstad, R.E., Acree, T.E., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Smith, D.M., Sporns, P. John Wiley & Sons, 463-470, New Jersey.
  • Yoshino, J., Conte, C., Fontana, L., Mittendorfer, B., Imai, S.I., Schechtman, K.B., Gu, C., Kunz, I., Fanelli, F.R., Patterson, B.W. (2012) Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance. Cell Metabolism 16, 658–664.

Total phenolic compound and trans-resveratrol levels of some grape (Vitis vinifera L.) stems

Year 2020, Volume: 24 Issue: 2, 222 - 228, 24.06.2020
https://doi.org/10.29050/harranziraat.651668

Abstract

Grape seeds, skins and wine have been studied widely due to their beneficial effects on human health. However, there are only few studies from grape stems extracts. Therefore, the main objective of the present study was the assessment in stem extracts from 49 Vitis vinifera L. varieties of the total polyphenolic content (TPC), trans-resveratrol, catechin and epicatechin. The range of the TPC in grape stem extracts was from 17025 to 123250 mg GAE kg-1 dry weight. Trans-resveratrol levels were range from 23.44 to 70.38, catechin levels were range from 843 to 14144 and epicatechin levels were range from 0 to 981 mg kg-1 dry weight. the present results indicate that grape stem extracts possess have important phenolic compounds, and thus they could be exploited, biofunctional foods or food supplements.

Project Number

11B4347003

References

  • Anastasiadi, M., Pratsinis, H., Kletsas, D., Skaltsounis, A.L., Haroutounian, S.A. (2012). Grape stem extracts: Polyphenolic content and assessment of their in vitro antioxidant properties. LWT - Food Science and Technology, 48, 316-322.
  • Anonim 2019. http://www.fao.org/faostat/en/. Erişim tarihi: 01.10.2019.
  • Apostolou, A., Stagos, D., Galitsiou, E., Spyrou, A., Haroutounian, S., Portesis, N., Trizoglou, I., Hayes, A.W., Tsatsakis, A.M. & Kouretas, D. (2013). Assessment of polyphenolic content, antioxidant activity, protection against ROS-induced DNA damage and anticancer activity of Vitis vinifera stem extracts. Food and Chemical Toxicology, 61, 60–68.
  • Boocock, D.J., Faust, G.E.S., Patel, K.R., Schinas, A.M., Brown, V.A., Ducharme, M.P., Booth, T.D., Crowell, J.A., Perloff, M., Gescher, A.J. (2007). Phase i dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiology Biomarkers and Preventetion, 16, 1246–1253.
  • Che, D.N., Xie, G.H., Cho, B.O., Shin, J.Y., Kang, H.J., Jang, S.I. (2017). Protective effects of grape stem extract against UVB-induced damage in C57BL mice skin. Journal of Photochemistry and Photobiology B: Biology, 173, 551–559.
  • Del Rio, D., Rodriguez-Mateos, A., Spencer, J.P.E., Tognolini, M., Borges, G., Crozier, A. (2013). Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases. Antioxidants and Redox Signaling, 18, 1818–1892.
  • Gambini, J., Inglés, M., Olaso, G., Lopez-Grueso, R., Bonet-Costa, V., Gimeno-Mallench, L., Mas-Bargues, C., Abdelaziz, K.M., Gomez-Cabrera, M.C., Vina, J., Borras, C. (2015). Properties of resveratrol: In vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxidative Medicine and Cellular Longevity, 1–13.
  • Martínez-Huélamo, M., Vallverdú-Queralt, A., Di Lecce, G., Valderas-Martínez, P., Tulipani, S., Jáuregui, O., Escribano-Ferrer, E., Estruch, R., Illan, M., Lamuela-Raventós, R.M. (2016). Bioavailability of tomato polyphenols is enhanced by processing and fat addition: Evidence from a randomized feeding trial. Molecular Nutrition and Food Research, 60, 1578–1589.
  • Ramírez‐Garza, S. L., Laveriano‐Santos, E. P., Marhuenda‐Muñoz, M., Storniolo, C. E., Tresserra‐Rimbau, A., Vallverdú‐Queralt, A., Lamuela‐Raventós, R. M. (2018). Health effects of resveratrol: Results from human intervention trials. Nutrients, 10( 12).
  • Singleton, V.L., Rossi, J.J.A. (1965). Colorimetric of totalmphenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3): 144-158.
  • Spigno, G., De Faveri, D. M. (2007). Antioxidants from grape stalks and marc: Influence of extraction procedure on yield, purity and antioxidant power of the extracts. Journal of Food Engineering, 78, 793-801.
  • Stagos, D., Kazantzoglou, G., Theofanidou, D., Kakalopoulou, G., Magiatis, P.,Mitaku, S., Kouretas, D., 2006. Activity of grape extracts from Greek vari-eties ofVitis viniferaagainst mutagenicity induced by bleomycin and hydrogenperoxide in Salmonella typhimurium strain TA102. Mutat. Res. 609 (2),165–175.
  • Vázquez-Armenta, F.J., Silva-Espinoza, B.A., Cruz-Valenzuela, M.R., González Aguilar, G.A., Nazzaro, F., Fratianni, F. (2017). Antibacterial and antioxidant properties of grape stem extract applied as disinfectant in fresh leafy vegetables. Journal of Food Science & Technology, 54 (10), 3192-3200.
  • Waterhouse, A.L. (2005). Determination of total fenolics, in Handbook of Food Analytical Chemistry, ed. by Wrolstad, R.E., Acree, T.E., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Smith, D.M., Sporns, P. John Wiley & Sons, 463-470, New Jersey.
  • Yoshino, J., Conte, C., Fontana, L., Mittendorfer, B., Imai, S.I., Schechtman, K.B., Gu, C., Kunz, I., Fanelli, F.R., Patterson, B.W. (2012) Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance. Cell Metabolism 16, 658–664.
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering, Horticultural Production
Journal Section Araştırma Makaleleri
Authors

Hande Tahmaz 0000-0003-4842-6441

Damla Yüksel Küskü 0000-0001-5398-1146

Gökhan Söylemezoğlu 0000-0002-7959-0407

Project Number 11B4347003
Publication Date June 24, 2020
Submission Date November 27, 2019
Published in Issue Year 2020 Volume: 24 Issue: 2

Cite

APA Tahmaz, H., Yüksel Küskü, D., & Söylemezoğlu, G. (2020). Üzüm (Vitis vinifera L.) Çeşitlerine Ait 49 Adet Salkım İskeletinin Toplam Fenolik Bileşik ve Trans-Resveratrol Düzeyleri. Harran Tarım Ve Gıda Bilimleri Dergisi, 24(2), 222-228. https://doi.org/10.29050/harranziraat.651668

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.