Research Article
BibTex RIS Cite
Year 2018, Volume: 46 Issue: 1, 91 - 99, 01.03.2018

Abstract

References

  • R. Gupta, P. Gigras, H. Mohapatra, V.K. Goswami, B. Chauhan, Microbial a-amylases: A biotechnological perspective, Process Biochem., 38 (2003) 1599–1616.
  • R.K. Saxena, K. Dutt, L. Agarwal, P. Nayyar, A highly thermostable and alkaline amylase from a Bacillus sp. PN5, Bioresour. Technol., 98 (2007) 260–265.
  • A. Pandey, C.R. Soccol, P. Nigam, V.T. Soccol, Biotechnological potential of agro-industrial residues: I. Sugarcane bagasse, Bioresour. Technol., 74 (2000) 69–80.
  • B. Arikan, Highly thermostable, thermophilic, alkaline, SDS and chelato rresistant amylase from a thermophilic Bacillus sp. Isolate A3-15, Bioresour. Technol., 99 (2008) 3071–3076.
  • M. Asgher, M.J. Asad, S.U. Rahman, R.L. Legge, A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing, J. Food. Eng.,79 (2007) 950–955.
  • C.R. Soccol, E.S. Ferreira da Costa, L.A.J. Letti, S.G. Karp, A.L. Woiciechowski, L.P.S. Vandenberghe, Recent developments and innovations in solid state fermentation, Biotechnology Research&Innovation., 1 (2017) 52-71.
  • A. Pandey, Solid-state fermentation, Biochem. Eng. J.,13 (2003) 81–84.
  • C.R. Soccol, L.P.S. Vandenberghe, Overview of solid state fermentation in Brazil, Biochem. Eng. J., 13 (2003) 205–218.
  • R.Kuhad, D. Deswal, S. Sharma, A. Bhattacharya, K. Jain, A. Kaur, Revisiting cellulase production and redefining current strategies based on major challenges, Renew. Sust. Energ. Rev., 55 (2016) 249– 272.
  • D. Pessoa, A. Finkler, A. Machado, L. Luz, D. Mitchell, Fluid dynamics simulation of a pilot-scale solid-state fermentation bioreactor, Chem. Eng. Trans., 49 (2016) 49–54.
  • D.H. Bergey, Thermophilic bacteria, J. Bacteriol., 4 (1919) 301–306.
  • T. Aanniz, M. Ouadghiri, M. Melloul, J. Swings, E. Elfahime, J. Ibijbijen, M. Ismaili, M. Amar, Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils, Braz. J. Microbiol., 46 (2015) 443–453.
  • K. Tamura, J. Dudley, M. Nei, S. Kumar, MEGA4: molecular evolutionary genetics analysis (MEGA), Mol. Biol. Evol., 24 (2007) 1596–1599.
  • P. Bernfeld, Amylases, α and β. In: Methods in Enzymology I. Academic, New York (1955).
  • K.S. Harmeet, S. Kanupriya, K.G. Jugal, K.S. Sanjeev, Production of a thermostable α-amylase from Bacillus sp. PS-7 by solid state fermentation and its synergistic use in the hydrolysis of malt starch for alcohol production, Process Biochem., 40 (2005) 525–534.
  • A. Kunamneni, K. Permaul, S. Singh, Amylase production in solid-state fermentation by the thermophilic fungus Thermomyces lanuginosus, J. Biosci. Bioeng., 100 (2005) 168–171.
  • N. Mahanta, A. Gupta, SK. Khare, Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate, Bioresour. Technol., 99 (2008) 1729–1735.
  • K.R. Babu, T. Satyanarayana, α-Amylase production by thermophilic Bacillus coagulans in solid state fermentation, Process, Biochem., 30 (1995) 305–309.
  • S.M. Kotwal, M.M. Gote, S.R. Sainkar, M.I. Khan, J.M. Khire, Production of α-galactosidase by thermophilic fungus Humicola sp. in solid state fermentation and its application in soya milk hydrolysis, Process Biochem., 33 (1998) 337–43.
  • P. Turner, G. Mamoand E.N. Karlsson, Potential and utilization of thermophiles and thermostable enzymes in biorefining, Microbial. Cell Factories., 6:9 (2007) 1–23.
  • A. Pandey, C.R. Soccol, J.A. Rodriguez Leon, P. Nigam, Factors that influence on solid state fermentation. In: Pandey A, ed. Solid State Fermentation in Biotechnology: Fundamentals and Applications. New Delhi: Asiatech Publishers Inc., (2001) pp. 21–9.
  • B.L. Luiand, Y.M. Tzeng, Water content and water activity for the production of cyclodepsipeptide in solid state fermentation, Biotechnol. Lett., 21 (1999) 657–661
  • M. Elibol, A.R. Moreira, Optimization some factors affecting alkaline protease production by a marine bacterium Teredinobacter turnirae under solidstate substrate fermentation, Process. Biochem., 40 (2005) 1951–1956.
  • R.V. Feniksova, A.S. Tikhomirova, E.E. Rakhleeva, Conditions for forming amylase and proteinase in surface cultures of Bacillus subtilis, Microbiologia., 29 (1960) 745–748.
  • S. Özdemir, F. Matpan, V. Okumus, A. Dündar, M.S. Ulutas, M. Kumru, Isolation of a thermophilic Anoxybacillus flavithermus sp. nov. and production of thermostable α-amylase under solid-state fermentation (SSF), Ann. Microbiol., 62 (2012) 1367– 1375.
  • W.F. Li, X.X. Zhou, P. Lu, Structural features of thermozymes, Biotechnol. Adv., 23 (2008) 271–281.
  • M. Michelin, T. M. Silva, V. M. Benassi, S. C. PeixotoNogueira, L. A. Moraes, J. M. Leão, J. A. Jorge, H. F. Terenzi, M. L. Polizeli, Purification and characterization of a thermostable a-amylase produced by the fungus Paecilomyces variotii, Carbohydrate Res. 345 (2010) 2348–2353.
  • A.A. Saboury, Stability, activity and binding properties study of α-amylase upon interaction with Ca2+ and Co2+, Biologia, 57 (2002) 221–228.

Production of Thermostable α-Amylase Through Solid State Fermentation (SSF) by Using Thermophilic Anoxybacillus sp.

Year 2018, Volume: 46 Issue: 1, 91 - 99, 01.03.2018

Abstract

The production of extracellular α-amylase (1,4-α-D-glucan glucanohydrolase, EC 3.2.1.1) by a newly isolated
thermophilic bacterium Anoxybacillus sp. was studied in solid state fermentation (SSF). Bacterial strain
was isolated from a thermal spring of Ömer, Afyonkarahisar in Turkey. Agricultural wastes such as banana
husk, wheat bran, rice husk, apple bark, orange bark, maize oil cake, lentil bran and pistachio shell were used
for α-amylase production as solid substrates. Growth on rice husk gave the highest α-amylase activity. The
maximum enzyme activity obtained was 3.628 U/mg of under optimum conditions of an fermentation time of
48 h, an incubation temperature of 60°C, a pH of 6.0, a substrat particle size 1.500 µm, an initial moisture level
of 60% and an inoculum level of 40% (v/w).

References

  • R. Gupta, P. Gigras, H. Mohapatra, V.K. Goswami, B. Chauhan, Microbial a-amylases: A biotechnological perspective, Process Biochem., 38 (2003) 1599–1616.
  • R.K. Saxena, K. Dutt, L. Agarwal, P. Nayyar, A highly thermostable and alkaline amylase from a Bacillus sp. PN5, Bioresour. Technol., 98 (2007) 260–265.
  • A. Pandey, C.R. Soccol, P. Nigam, V.T. Soccol, Biotechnological potential of agro-industrial residues: I. Sugarcane bagasse, Bioresour. Technol., 74 (2000) 69–80.
  • B. Arikan, Highly thermostable, thermophilic, alkaline, SDS and chelato rresistant amylase from a thermophilic Bacillus sp. Isolate A3-15, Bioresour. Technol., 99 (2008) 3071–3076.
  • M. Asgher, M.J. Asad, S.U. Rahman, R.L. Legge, A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing, J. Food. Eng.,79 (2007) 950–955.
  • C.R. Soccol, E.S. Ferreira da Costa, L.A.J. Letti, S.G. Karp, A.L. Woiciechowski, L.P.S. Vandenberghe, Recent developments and innovations in solid state fermentation, Biotechnology Research&Innovation., 1 (2017) 52-71.
  • A. Pandey, Solid-state fermentation, Biochem. Eng. J.,13 (2003) 81–84.
  • C.R. Soccol, L.P.S. Vandenberghe, Overview of solid state fermentation in Brazil, Biochem. Eng. J., 13 (2003) 205–218.
  • R.Kuhad, D. Deswal, S. Sharma, A. Bhattacharya, K. Jain, A. Kaur, Revisiting cellulase production and redefining current strategies based on major challenges, Renew. Sust. Energ. Rev., 55 (2016) 249– 272.
  • D. Pessoa, A. Finkler, A. Machado, L. Luz, D. Mitchell, Fluid dynamics simulation of a pilot-scale solid-state fermentation bioreactor, Chem. Eng. Trans., 49 (2016) 49–54.
  • D.H. Bergey, Thermophilic bacteria, J. Bacteriol., 4 (1919) 301–306.
  • T. Aanniz, M. Ouadghiri, M. Melloul, J. Swings, E. Elfahime, J. Ibijbijen, M. Ismaili, M. Amar, Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils, Braz. J. Microbiol., 46 (2015) 443–453.
  • K. Tamura, J. Dudley, M. Nei, S. Kumar, MEGA4: molecular evolutionary genetics analysis (MEGA), Mol. Biol. Evol., 24 (2007) 1596–1599.
  • P. Bernfeld, Amylases, α and β. In: Methods in Enzymology I. Academic, New York (1955).
  • K.S. Harmeet, S. Kanupriya, K.G. Jugal, K.S. Sanjeev, Production of a thermostable α-amylase from Bacillus sp. PS-7 by solid state fermentation and its synergistic use in the hydrolysis of malt starch for alcohol production, Process Biochem., 40 (2005) 525–534.
  • A. Kunamneni, K. Permaul, S. Singh, Amylase production in solid-state fermentation by the thermophilic fungus Thermomyces lanuginosus, J. Biosci. Bioeng., 100 (2005) 168–171.
  • N. Mahanta, A. Gupta, SK. Khare, Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate, Bioresour. Technol., 99 (2008) 1729–1735.
  • K.R. Babu, T. Satyanarayana, α-Amylase production by thermophilic Bacillus coagulans in solid state fermentation, Process, Biochem., 30 (1995) 305–309.
  • S.M. Kotwal, M.M. Gote, S.R. Sainkar, M.I. Khan, J.M. Khire, Production of α-galactosidase by thermophilic fungus Humicola sp. in solid state fermentation and its application in soya milk hydrolysis, Process Biochem., 33 (1998) 337–43.
  • P. Turner, G. Mamoand E.N. Karlsson, Potential and utilization of thermophiles and thermostable enzymes in biorefining, Microbial. Cell Factories., 6:9 (2007) 1–23.
  • A. Pandey, C.R. Soccol, J.A. Rodriguez Leon, P. Nigam, Factors that influence on solid state fermentation. In: Pandey A, ed. Solid State Fermentation in Biotechnology: Fundamentals and Applications. New Delhi: Asiatech Publishers Inc., (2001) pp. 21–9.
  • B.L. Luiand, Y.M. Tzeng, Water content and water activity for the production of cyclodepsipeptide in solid state fermentation, Biotechnol. Lett., 21 (1999) 657–661
  • M. Elibol, A.R. Moreira, Optimization some factors affecting alkaline protease production by a marine bacterium Teredinobacter turnirae under solidstate substrate fermentation, Process. Biochem., 40 (2005) 1951–1956.
  • R.V. Feniksova, A.S. Tikhomirova, E.E. Rakhleeva, Conditions for forming amylase and proteinase in surface cultures of Bacillus subtilis, Microbiologia., 29 (1960) 745–748.
  • S. Özdemir, F. Matpan, V. Okumus, A. Dündar, M.S. Ulutas, M. Kumru, Isolation of a thermophilic Anoxybacillus flavithermus sp. nov. and production of thermostable α-amylase under solid-state fermentation (SSF), Ann. Microbiol., 62 (2012) 1367– 1375.
  • W.F. Li, X.X. Zhou, P. Lu, Structural features of thermozymes, Biotechnol. Adv., 23 (2008) 271–281.
  • M. Michelin, T. M. Silva, V. M. Benassi, S. C. PeixotoNogueira, L. A. Moraes, J. M. Leão, J. A. Jorge, H. F. Terenzi, M. L. Polizeli, Purification and characterization of a thermostable a-amylase produced by the fungus Paecilomyces variotii, Carbohydrate Res. 345 (2010) 2348–2353.
  • A.A. Saboury, Stability, activity and binding properties study of α-amylase upon interaction with Ca2+ and Co2+, Biologia, 57 (2002) 221–228.
There are 28 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

M.serkan Yalçın This is me

Sadin Özdemır

Publication Date March 1, 2018
Acceptance Date June 26, 2018
Published in Issue Year 2018 Volume: 46 Issue: 1

Cite

APA Yalçın, M., & Özdemır, S. (2018). Production of Thermostable α-Amylase Through Solid State Fermentation (SSF) by Using Thermophilic Anoxybacillus sp. Hacettepe Journal of Biology and Chemistry, 46(1), 91-99.
AMA Yalçın M, Özdemır S. Production of Thermostable α-Amylase Through Solid State Fermentation (SSF) by Using Thermophilic Anoxybacillus sp. HJBC. March 2018;46(1):91-99.
Chicago Yalçın, M.serkan, and Sadin Özdemır. “Production of Thermostable α-Amylase Through Solid State Fermentation (SSF) by Using Thermophilic Anoxybacillus Sp”. Hacettepe Journal of Biology and Chemistry 46, no. 1 (March 2018): 91-99.
EndNote Yalçın M, Özdemır S (March 1, 2018) Production of Thermostable α-Amylase Through Solid State Fermentation (SSF) by Using Thermophilic Anoxybacillus sp. Hacettepe Journal of Biology and Chemistry 46 1 91–99.
IEEE M. Yalçın and S. Özdemır, “Production of Thermostable α-Amylase Through Solid State Fermentation (SSF) by Using Thermophilic Anoxybacillus sp”., HJBC, vol. 46, no. 1, pp. 91–99, 2018.
ISNAD Yalçın, M.serkan - Özdemır, Sadin. “Production of Thermostable α-Amylase Through Solid State Fermentation (SSF) by Using Thermophilic Anoxybacillus Sp”. Hacettepe Journal of Biology and Chemistry 46/1 (March 2018), 91-99.
JAMA Yalçın M, Özdemır S. Production of Thermostable α-Amylase Through Solid State Fermentation (SSF) by Using Thermophilic Anoxybacillus sp. HJBC. 2018;46:91–99.
MLA Yalçın, M.serkan and Sadin Özdemır. “Production of Thermostable α-Amylase Through Solid State Fermentation (SSF) by Using Thermophilic Anoxybacillus Sp”. Hacettepe Journal of Biology and Chemistry, vol. 46, no. 1, 2018, pp. 91-99.
Vancouver Yalçın M, Özdemır S. Production of Thermostable α-Amylase Through Solid State Fermentation (SSF) by Using Thermophilic Anoxybacillus sp. HJBC. 2018;46(1):91-9.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc