Review
BibTex RIS Cite

Plant molecular pharming is a promising system for cost-effective production of veterinary vaccines

Year 2020, Volume: 33 Issue: 3, 375 - 380, 28.12.2020
https://doi.org/10.29136/mediterranean.832889

Abstract

Vaccination of animals has been used for centuries and is generally considered the most cost-effective and sustainable method of disease control and prevention. About twenty-five years ago, vaccines were in a inactive form or live attenuated organisms and often were not very effective. Advances in molecular biology and biotechnology have made it possible to develop new vaccines and therapeutic targes. Plant expression system has been demonstrated to be a promising platform for production of a variety of recombinant proteins such as vaccines, antibodies, therapeutic proteins, human and industrial enzymes, toxins etc. for health, agricultural and industrial applications. Although plant produced products are already available and licensed for human use, however, there are currently no plant-based vaccines on the market for animal use other than the Newcastle poultry vaccine. This is probably explained by relatively high cost of plant produced recombinant protein based vaccines for animal use. Therefore, the development of inexpensive and affordable plant-based vaccines and their formulation is very important for the production of economical animal vaccines. In this review, (1) different expression systems, (2) the history of plant-based expression systems, (3) different types of vaccines, and(4) plant-based animal vaccine production in plants are discussed. We also discussed the advantages of plants in the development of veterinary vaccines and new developed strategies that can lead to the production of cost-effective, stable and highly immunogenic veterinary vaccines.

References

  • Ashraf S, Singh PK, Yadav DK, Shahnawaz M, Mishra S, Sawant SV, Tuli R (2005) High level expression of surface glycoprotein of rabies virus in tobacco leaves and its immunoprotective activity in mice. Journal of Biotechnology 119: 1-14.
  • Aziz MA, Singh S, Kumar PA, Bhatnagar R (2002) Expression of protective antigen in transgenic plants: a step towards edible vaccine against anthrax. Biochemical and biophysical research communications 299(3): 345-51.
  • Aziz MA, Sikriwal D, Singh S, Jarugula S, Kumar PA, Bhatnagar R (2005) Transformation of an edible crop with the pagA gene of Bacillus anthracis. FASEB Journal 19: 1501-1503.
  • Babiuk LA, Pontarollo R, Babiuk S, Loehr B.(2003) Induction of immune responses by DNA vaccines in large animals. Vaccine 21(7-8): 649-58.
  • Biemelt S, Sonnewald U, Galmbacher P, Willmitzer L, Muller M (2003) Production of human Papillomavirus type 16 virus-like particles in transgenic plants. Journal of Virologycarrillo 77: 9211-9220.
  • Carrillo C, Tulman ER, Delhon G, Lu Z, Carreno A, Vagnozzi A, Kutish GF, Rock DL. (2005) Comparative genomics of foot-and-mouth disease virus. Journal of Virology 79(10): 6487-504.
  • Castanon S, Marin MS, Martin-Alonso JM, Boga JA, Casais R, Humara JM, Ordas RJ, Parra F (1999) Immunization with potato plants expressing VP60 protein protects against rabbit Hemorrhagic disease virus. Journal of Virology 73: 4452-4455.
  • Chester C, Dorigo O, Berek JS, Kohrt H (2015) Immunotherapeutic approaches to ovarian cancer treatment. doi: 10.1186/s40425-015-0051-7.
  • Chichester JA, Manceva SD, Rhee A, Coffin MV, Musiychuk K, Mett V, Shamloul M, Norikane J, Streatfield SJ, Yusibov V (2013) A plant-produced protective antigen vaccine confers protection in rabbits against a lethal aerosolized challenge with Bacillus anthracis amesspores. Human Vaccines Immunotherapeutics 9: 544-552.
  • Cho HW, Howard CR, Lee HW (2002) Review of an inactivated vaccine against hantaviruses. Intervirology 45(4-6): 328-33.
  • Cox JH, Dietzschold B, Schneider LG (1977) Rabies virus glycoprotein II. Biological and serological characterization. Infection and immunity 16(3): 754-9.
  • Dalsgaard K, Uttenthal A, Jones TD, Xu F, Merryweather A, Hamilton WD, Langeveld JP, Boshuizen RS, Kamstrup S, Lomonossoff GP, Porta C, Vela C, Casal JI, Meloen RH, Rodgers PB (1997) Plant-derived vaccine protects target animals against a viral disease. Nature Biotechnology 15: 248-252.
  • Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecular farming: Production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends in Plant Science 6(5): 219-226.
  • Daniell H (2006) Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnology Journal Healthcare Nutrition Technology 1(10): 1071-1079.
  • Dietzschold B, Faber M, Schnell MJ (2003) New approaches to the prevention and eradication of rabies. Expert review of vaccines 2(3): 399-406.
  • Filgueira DP, Mozgovoj M, Wigdorovitz A, Santos MD, Parreno V, Trono K, Fernandez FM, Carrillo C, Babiuk LA, Morris TJ, Borca MV (2004) Passive protection to bovine rotavirus (BRV) infection induced by a BRV VP8* produced in plants using a TMV-based vector. Archives of virology 149(12): 2337-48.
  • Foley HD, McGettigan JP, Siler CA, Dietzschold B, Schnell MJ (2000) A recombinant rabies virus expressing vesicular stomatitis virus glycoprotein fails to protect against rabies virus infection. Proceedings of the National Academy of Sciences 97(26): 14680-14685.
  • Franken E, Teuschel U, Hain R (1997) Recombinant proteins from transgenic plants. Current opinion in biotechnology 8(4): 411-416.
  • Gaudin Y, Ruigrok RW, Tuffereau C, Knossow M, Flamand A (1992) Rabies virus glycoprotein is a trimer. Virology 187(2): 627-632.
  • Gelder van P, Makoschey B (2012) Production of viral vaccines for veterinary use. Berliner und munchener tierarztliche wochenschrift. 125(3-4): 103-9.
  • Haq TA, Mason HS, Clements JD, Arntzen CJ (1995) Oral immunizationwith a recombinant bacterial antigen produced in transgenicplants. Science 268: 714-716.
  • Hennegan K, Yang D, Nguyen D, Wu L, Goding J, Huang J, Guo F, Huang N, Watkins SC (2005) Improvement of human lysozyme expression in transgenic rice grain by combining wheat (Triticum aestivum) puroindoline b and rice (Oryza sativa) Gt1 promoters and signal peptides. Transgenic research 14(5): 583-92.
  • Huang H, Xiao S, Qin J, Jiang Y, Yang S, Li T, Ruan Y (2011) Construction and immunogenicity of a recombinant pseudotype baculovirus expressing the glycoprotein of rabies virus in mice. Archives of virology 156(5): 753-758.
  • Kaur M, Saxena A, Rai A, Bhatnagar R (2010) Rabies DNA vaccine encoding lysosome‐targeted glycoprotein supplemented with Emulsigen‐D confers complete protection in preexposure and postexposure studies in BALB/c mice. The FASEB Journal 24(1): 173-183.
  • Koya V, Moayeri M, Leppla SH, Daniell H (2005) Plant-based vaccine: Mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal toxin challenge. Infection and Immunity 73: 8266-8274.
  • Kramps T, Elbers K (2017) Introduction to RNA vaccines. In: RNA Vaccines. Humana Press, New York NY, pp. 1-11.
  • Li Y, Sun M, Liu J, Yang Z, Zhang Z, Shen G (2006) High expression of foot-and-mouth disease virus structural protein VP1 in tobacco chloroplasts. Plant Cell Reports 25: 329-333.
  • Lico C, Santi L, Twyman RM, Pezzotti M, Avesani L (2012) The use of plants for the production of therapeutic human peptides. Plant cell reports 31(3): 439-451.
  • Loza-Rubio E, Rojas E, Gomez L, Olivera MT, Gomez-Lim MA (2008) Development of an edible rabies vaccine in maize using the Vnukovo strain. Developments in biologicals 131: 477-82.
  • Macfarlan RI, Dietzschold B, Koprowski H (1986) Stimulation of cytotoxic T-lymphocyte responses by rabies virus glycoprotein and identification of an immunodominant domain. Molecular immunology 23(7): 733-741.
  • Mamedov T, Ghosh A, Jones RM, Mett V, Farrance CE, Musiychuk K, Horsey A, Yusibov V (2012) Production of non‐glycosylated recombinant proteins in Nicotiana benthamiana plants by co‐expressing bacterial PNGase F. Plant Biotechnology Journal 10: 773-782.
  • Mamedov T, Yusibov V (2013) In vivo deglycosylation of recombinant proteins in plants by co-expression with bacterial PNGase F. Bioengineered 4: 338-342.
  • Mamedov T, Chichester JA, Jones RM, Ghosh A, Coffin MV, Herschbach K, Yusibov V (2016) Production of functionally active and immunogenic non-glycosylated protective antigen from Bacillus anthracis in Nicotiana benthamiana by co-expression with peptide-N-glycosidase F (PNGase F) of Flavobacterium meningosepticum. PloS one 11(4): e0153956.
  • Mamedov T, Cicek K, Gulec B, Ungor R, Hasanova G (2017) In vivo production of non-glycosylated recombinant proteins in Nicotiana benthamiana plants by co-expression with Endo-β-N-acetylglucosaminidase H (Endo H) of Streptomyces plicatus. PloS one 12(8): e0183589.
  • Mamedov T, Cicek K, Miura K, Gulec B, Akinci E, Mammadova G, Hasanova G (2019a) A Plant-Produced in vivo deglycosylated full-length Pfs48/45 as a Transmission-Blocking Vaccine Candidate against malaria. Scientific reports 9(1): 1-12.
  • Mamedov T, Musayeva I, Acsora R, Gun N, Gulec B, Mammadova G, Cicek K, Hasanova G. (2019b) Engineering, and production of functionally active human Furin in N. benthamiana plant: In vivo post-translational processing of target proteins by Furin in plants. Plos one.14(3):e0213438.
  • McGarvey PB, Hammond J, Dienelt MM, Hooper DC, Fu ZF, Dietzschold B, Michaels FH (1995) Expression of the rabies virus glycoprotein in transgenic tomatoes. Bio/technology 13(12): 1484-1487.
  • Meeusen EN, Walker J, Peters A, Pastoret PP, Jungersen G (2007) Current status of veterinary vaccines. Clinical microbiology reviews 20(3): 489-510.
  • Merlin M, Gecchele E, Capaldi S, Pezzotti M, Avesani L (2014) Comparative evaluation of recombinant protein production in different biofactories: The green perspective. doi: 10.1155/2014/136419.
  • Molina V, Shoenfeld Y (2005) Infection, vaccines and other environmental triggers of autoimmunity. Autoimmunity 38(3): 235-245.
  • Rogan D, Babiuk LA (2005). Novel vaccines from biotechnology. OIE Revue Scientifique et Technique 24(1): 159-174.
  • Schnell MJ, McGettigan JP, Wirblich C, Papaneri A (2010) The cell biology of rabies virus: using stealth to reach the brain. Nature Reviews Microbiology 8(1): 51-61.
  • Shams H (2005) Recent developments in veterinary vaccinology. Veterinary Journal 170(3): 289-299.
  • Shoseyov O, Posen Y, Grynspan F (2014) Human collagen produced in plants: more than just another molecule. Bioengineered 5(1): 49-52.
  • Tregoning J, Malig, P, Dougan G, Nixon PJ (2004) New advances in the production of edible plant vaccines: chloroplast expression of a tetanus vaccine antigen, TetC. Phytochemistry 65(8): 989-994.
  • Twyman RM, Schillberg S, Fischer R (2005) Transgenic plants in the biopharmaceutical market. Expert opinion on emerging drugs 10(1): 185-218.
  • Varsani A, Williamson AL, Rose RC, Jaffer M, Rybicki EP (2003) Expression of Human papillomavirus type 16 major capsid protein in transgenic Nicotiana tabacum cv. xanthi. Archives of virology 148(9): 1771-86.
  • Warzecha H, Mason HS, Lane C, Tryggvesson A, Rybicki E, Williamson AL, Clements JD, Rose RC (2003) Oral immunogenicity of human papillomavirus-like particles expressed in potato. Journal of Virology 77: 8702-8711.
  • Wigdorovitz A, Mozgovoj M, Santos MJ, Parreno V, Gomez C, Perez-Filgueira DM, Trono KG, Rios RD, Franzone PM, Fernandez F, Carrillo C, Babiuk LA, Escribano JM, Borca MV (2004) Protective lactogenic immunity conferred by an edible peptide vaccine to bovine rotavirus produced in transgenic plants. Journal of General Virology 85: 1825-1832.
  • Wiktor TJ, György E, Schlumberge, Koprowski H (1973) Antigenic properties of rabies virus components. The Journal of Immunology 110(1): 269-276.
  • Yang ZQ, Liu QQ, Pan ZM, Yu HX, Jiao XA (2007b) Expression of the fusion glycoprotein of Newcastle disease virus in transgenic rice and its immunogenicity in mice. Vaccine 25: 591-598.
  • Yu J, Langridge WH (2001) A plant-based multicomponent vaccine protects mice from enteric diseases. Nature Biotechnology 19: 548-552.
  • Yusibov V, Hooper DC, Spitsin SV, Fleysh N, Kean RB, Mikheeva T, Deka D, Karasev A, Cox S, Randall J, Koprowski H (2002) Expression in plants and immunogenicity of plantvirus-based experimental rabies vaccine. Vaccine 20: 3155-3164.
  • Yusibov VM, Mamedov TG (2010) Plants as an alternative system for expression of vaccine antigens. Proceedings of ANAS Biological Science 65: 195-200.

Bitki moleküler üretimli ilaçlar, veteriner aşılarının uygun maliyetli üretimi için umut verici bir sistemdir

Year 2020, Volume: 33 Issue: 3, 375 - 380, 28.12.2020
https://doi.org/10.29136/mediterranean.832889

Abstract

Hayvanların aşılanması yüzyıllardır kullanılmaktadır ve genellikle hastalık kontrolü ve önlenmesi için en uygun maliyetli ve sürdürülebilir yöntem olarak kabul edilmektedir. Yaklaşık yirmi beş yıl önce, aşılar inaktif bir formdaydı veya canlı zayıflatılmış organizmalardı ve çoğu zaman çok etkili değildi. Moleküler biyoloji ve biyoteknolojideki gelişmeler, yeni aşılar ve terapötik hedefler geliştirmeyi mümkün kılmıştır. Bitki ekspresyon sisteminin, aşılar, antikorlar, terapötik proteinler, insan ve endüstriyel enzimler, toksinler vb. gibi çeşitli rekombinant proteinlerin üretimi sağlık, tarım ve endüstriyel uygulamalar için umut verici bir platform olduğu gösterilmiştir. Bitki tarafından üretilen ürünler zaten mevcut ve insan kullanımı için lisanslanmış olsa da, şu anda piyasada Newcastle kümes hayvanları aşısından başka hayvan kullanımı için bitki bazlı aşılar bulunmamaktadır. Bu muhtemelen hayvan kullanımı için bitki tarafından üretilen rekombinant protein bazlı aşıların nispeten yüksek maliyeti ile açıklanmaktadır. Bu nedenle, ucuz ve uygun fiyatlı bitki bazlı aşıların geliştirilmesi ve bunların formülasyonu, ekonomik hayvan aşılarının üretimi için çok önemlidir. Bu derlemede, (1) farklı ekspresyon sistemleri, (2) bitki bazlı ekspresyon sistemlerinin tarihçesi, (3) farklı aşı türleri ve (4) bitkilerde bitki bazlı hayvan aşısı üretimi tartışılmıştır. Ayrıca, bitkilerin veteriner aşılarının geliştirilmesindeki avantajlarını ve uygun maliyetli, istikrarlı ve yüksek immünojenik veteriner aşılarının üretimine yol açabilecek yeni geliştirilmiş stratejileri tartışılmıştır.

References

  • Ashraf S, Singh PK, Yadav DK, Shahnawaz M, Mishra S, Sawant SV, Tuli R (2005) High level expression of surface glycoprotein of rabies virus in tobacco leaves and its immunoprotective activity in mice. Journal of Biotechnology 119: 1-14.
  • Aziz MA, Singh S, Kumar PA, Bhatnagar R (2002) Expression of protective antigen in transgenic plants: a step towards edible vaccine against anthrax. Biochemical and biophysical research communications 299(3): 345-51.
  • Aziz MA, Sikriwal D, Singh S, Jarugula S, Kumar PA, Bhatnagar R (2005) Transformation of an edible crop with the pagA gene of Bacillus anthracis. FASEB Journal 19: 1501-1503.
  • Babiuk LA, Pontarollo R, Babiuk S, Loehr B.(2003) Induction of immune responses by DNA vaccines in large animals. Vaccine 21(7-8): 649-58.
  • Biemelt S, Sonnewald U, Galmbacher P, Willmitzer L, Muller M (2003) Production of human Papillomavirus type 16 virus-like particles in transgenic plants. Journal of Virologycarrillo 77: 9211-9220.
  • Carrillo C, Tulman ER, Delhon G, Lu Z, Carreno A, Vagnozzi A, Kutish GF, Rock DL. (2005) Comparative genomics of foot-and-mouth disease virus. Journal of Virology 79(10): 6487-504.
  • Castanon S, Marin MS, Martin-Alonso JM, Boga JA, Casais R, Humara JM, Ordas RJ, Parra F (1999) Immunization with potato plants expressing VP60 protein protects against rabbit Hemorrhagic disease virus. Journal of Virology 73: 4452-4455.
  • Chester C, Dorigo O, Berek JS, Kohrt H (2015) Immunotherapeutic approaches to ovarian cancer treatment. doi: 10.1186/s40425-015-0051-7.
  • Chichester JA, Manceva SD, Rhee A, Coffin MV, Musiychuk K, Mett V, Shamloul M, Norikane J, Streatfield SJ, Yusibov V (2013) A plant-produced protective antigen vaccine confers protection in rabbits against a lethal aerosolized challenge with Bacillus anthracis amesspores. Human Vaccines Immunotherapeutics 9: 544-552.
  • Cho HW, Howard CR, Lee HW (2002) Review of an inactivated vaccine against hantaviruses. Intervirology 45(4-6): 328-33.
  • Cox JH, Dietzschold B, Schneider LG (1977) Rabies virus glycoprotein II. Biological and serological characterization. Infection and immunity 16(3): 754-9.
  • Dalsgaard K, Uttenthal A, Jones TD, Xu F, Merryweather A, Hamilton WD, Langeveld JP, Boshuizen RS, Kamstrup S, Lomonossoff GP, Porta C, Vela C, Casal JI, Meloen RH, Rodgers PB (1997) Plant-derived vaccine protects target animals against a viral disease. Nature Biotechnology 15: 248-252.
  • Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecular farming: Production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends in Plant Science 6(5): 219-226.
  • Daniell H (2006) Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnology Journal Healthcare Nutrition Technology 1(10): 1071-1079.
  • Dietzschold B, Faber M, Schnell MJ (2003) New approaches to the prevention and eradication of rabies. Expert review of vaccines 2(3): 399-406.
  • Filgueira DP, Mozgovoj M, Wigdorovitz A, Santos MD, Parreno V, Trono K, Fernandez FM, Carrillo C, Babiuk LA, Morris TJ, Borca MV (2004) Passive protection to bovine rotavirus (BRV) infection induced by a BRV VP8* produced in plants using a TMV-based vector. Archives of virology 149(12): 2337-48.
  • Foley HD, McGettigan JP, Siler CA, Dietzschold B, Schnell MJ (2000) A recombinant rabies virus expressing vesicular stomatitis virus glycoprotein fails to protect against rabies virus infection. Proceedings of the National Academy of Sciences 97(26): 14680-14685.
  • Franken E, Teuschel U, Hain R (1997) Recombinant proteins from transgenic plants. Current opinion in biotechnology 8(4): 411-416.
  • Gaudin Y, Ruigrok RW, Tuffereau C, Knossow M, Flamand A (1992) Rabies virus glycoprotein is a trimer. Virology 187(2): 627-632.
  • Gelder van P, Makoschey B (2012) Production of viral vaccines for veterinary use. Berliner und munchener tierarztliche wochenschrift. 125(3-4): 103-9.
  • Haq TA, Mason HS, Clements JD, Arntzen CJ (1995) Oral immunizationwith a recombinant bacterial antigen produced in transgenicplants. Science 268: 714-716.
  • Hennegan K, Yang D, Nguyen D, Wu L, Goding J, Huang J, Guo F, Huang N, Watkins SC (2005) Improvement of human lysozyme expression in transgenic rice grain by combining wheat (Triticum aestivum) puroindoline b and rice (Oryza sativa) Gt1 promoters and signal peptides. Transgenic research 14(5): 583-92.
  • Huang H, Xiao S, Qin J, Jiang Y, Yang S, Li T, Ruan Y (2011) Construction and immunogenicity of a recombinant pseudotype baculovirus expressing the glycoprotein of rabies virus in mice. Archives of virology 156(5): 753-758.
  • Kaur M, Saxena A, Rai A, Bhatnagar R (2010) Rabies DNA vaccine encoding lysosome‐targeted glycoprotein supplemented with Emulsigen‐D confers complete protection in preexposure and postexposure studies in BALB/c mice. The FASEB Journal 24(1): 173-183.
  • Koya V, Moayeri M, Leppla SH, Daniell H (2005) Plant-based vaccine: Mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal toxin challenge. Infection and Immunity 73: 8266-8274.
  • Kramps T, Elbers K (2017) Introduction to RNA vaccines. In: RNA Vaccines. Humana Press, New York NY, pp. 1-11.
  • Li Y, Sun M, Liu J, Yang Z, Zhang Z, Shen G (2006) High expression of foot-and-mouth disease virus structural protein VP1 in tobacco chloroplasts. Plant Cell Reports 25: 329-333.
  • Lico C, Santi L, Twyman RM, Pezzotti M, Avesani L (2012) The use of plants for the production of therapeutic human peptides. Plant cell reports 31(3): 439-451.
  • Loza-Rubio E, Rojas E, Gomez L, Olivera MT, Gomez-Lim MA (2008) Development of an edible rabies vaccine in maize using the Vnukovo strain. Developments in biologicals 131: 477-82.
  • Macfarlan RI, Dietzschold B, Koprowski H (1986) Stimulation of cytotoxic T-lymphocyte responses by rabies virus glycoprotein and identification of an immunodominant domain. Molecular immunology 23(7): 733-741.
  • Mamedov T, Ghosh A, Jones RM, Mett V, Farrance CE, Musiychuk K, Horsey A, Yusibov V (2012) Production of non‐glycosylated recombinant proteins in Nicotiana benthamiana plants by co‐expressing bacterial PNGase F. Plant Biotechnology Journal 10: 773-782.
  • Mamedov T, Yusibov V (2013) In vivo deglycosylation of recombinant proteins in plants by co-expression with bacterial PNGase F. Bioengineered 4: 338-342.
  • Mamedov T, Chichester JA, Jones RM, Ghosh A, Coffin MV, Herschbach K, Yusibov V (2016) Production of functionally active and immunogenic non-glycosylated protective antigen from Bacillus anthracis in Nicotiana benthamiana by co-expression with peptide-N-glycosidase F (PNGase F) of Flavobacterium meningosepticum. PloS one 11(4): e0153956.
  • Mamedov T, Cicek K, Gulec B, Ungor R, Hasanova G (2017) In vivo production of non-glycosylated recombinant proteins in Nicotiana benthamiana plants by co-expression with Endo-β-N-acetylglucosaminidase H (Endo H) of Streptomyces plicatus. PloS one 12(8): e0183589.
  • Mamedov T, Cicek K, Miura K, Gulec B, Akinci E, Mammadova G, Hasanova G (2019a) A Plant-Produced in vivo deglycosylated full-length Pfs48/45 as a Transmission-Blocking Vaccine Candidate against malaria. Scientific reports 9(1): 1-12.
  • Mamedov T, Musayeva I, Acsora R, Gun N, Gulec B, Mammadova G, Cicek K, Hasanova G. (2019b) Engineering, and production of functionally active human Furin in N. benthamiana plant: In vivo post-translational processing of target proteins by Furin in plants. Plos one.14(3):e0213438.
  • McGarvey PB, Hammond J, Dienelt MM, Hooper DC, Fu ZF, Dietzschold B, Michaels FH (1995) Expression of the rabies virus glycoprotein in transgenic tomatoes. Bio/technology 13(12): 1484-1487.
  • Meeusen EN, Walker J, Peters A, Pastoret PP, Jungersen G (2007) Current status of veterinary vaccines. Clinical microbiology reviews 20(3): 489-510.
  • Merlin M, Gecchele E, Capaldi S, Pezzotti M, Avesani L (2014) Comparative evaluation of recombinant protein production in different biofactories: The green perspective. doi: 10.1155/2014/136419.
  • Molina V, Shoenfeld Y (2005) Infection, vaccines and other environmental triggers of autoimmunity. Autoimmunity 38(3): 235-245.
  • Rogan D, Babiuk LA (2005). Novel vaccines from biotechnology. OIE Revue Scientifique et Technique 24(1): 159-174.
  • Schnell MJ, McGettigan JP, Wirblich C, Papaneri A (2010) The cell biology of rabies virus: using stealth to reach the brain. Nature Reviews Microbiology 8(1): 51-61.
  • Shams H (2005) Recent developments in veterinary vaccinology. Veterinary Journal 170(3): 289-299.
  • Shoseyov O, Posen Y, Grynspan F (2014) Human collagen produced in plants: more than just another molecule. Bioengineered 5(1): 49-52.
  • Tregoning J, Malig, P, Dougan G, Nixon PJ (2004) New advances in the production of edible plant vaccines: chloroplast expression of a tetanus vaccine antigen, TetC. Phytochemistry 65(8): 989-994.
  • Twyman RM, Schillberg S, Fischer R (2005) Transgenic plants in the biopharmaceutical market. Expert opinion on emerging drugs 10(1): 185-218.
  • Varsani A, Williamson AL, Rose RC, Jaffer M, Rybicki EP (2003) Expression of Human papillomavirus type 16 major capsid protein in transgenic Nicotiana tabacum cv. xanthi. Archives of virology 148(9): 1771-86.
  • Warzecha H, Mason HS, Lane C, Tryggvesson A, Rybicki E, Williamson AL, Clements JD, Rose RC (2003) Oral immunogenicity of human papillomavirus-like particles expressed in potato. Journal of Virology 77: 8702-8711.
  • Wigdorovitz A, Mozgovoj M, Santos MJ, Parreno V, Gomez C, Perez-Filgueira DM, Trono KG, Rios RD, Franzone PM, Fernandez F, Carrillo C, Babiuk LA, Escribano JM, Borca MV (2004) Protective lactogenic immunity conferred by an edible peptide vaccine to bovine rotavirus produced in transgenic plants. Journal of General Virology 85: 1825-1832.
  • Wiktor TJ, György E, Schlumberge, Koprowski H (1973) Antigenic properties of rabies virus components. The Journal of Immunology 110(1): 269-276.
  • Yang ZQ, Liu QQ, Pan ZM, Yu HX, Jiao XA (2007b) Expression of the fusion glycoprotein of Newcastle disease virus in transgenic rice and its immunogenicity in mice. Vaccine 25: 591-598.
  • Yu J, Langridge WH (2001) A plant-based multicomponent vaccine protects mice from enteric diseases. Nature Biotechnology 19: 548-552.
  • Yusibov V, Hooper DC, Spitsin SV, Fleysh N, Kean RB, Mikheeva T, Deka D, Karasev A, Cox S, Randall J, Koprowski H (2002) Expression in plants and immunogenicity of plantvirus-based experimental rabies vaccine. Vaccine 20: 3155-3164.
  • Yusibov VM, Mamedov TG (2010) Plants as an alternative system for expression of vaccine antigens. Proceedings of ANAS Biological Science 65: 195-200.
There are 54 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Makaleler
Authors

Tarlan Mamedov 0000-0002-5747-4990

Burcu Gulec 0000-0002-8229-3112

Gulshan Mammadova This is me 0000-0002-3578-0161

Publication Date December 28, 2020
Submission Date November 29, 2020
Published in Issue Year 2020 Volume: 33 Issue: 3

Cite

APA Mamedov, T., Gulec, B., & Mammadova, G. (2020). Plant molecular pharming is a promising system for cost-effective production of veterinary vaccines. Mediterranean Agricultural Sciences, 33(3), 375-380. https://doi.org/10.29136/mediterranean.832889
AMA Mamedov T, Gulec B, Mammadova G. Plant molecular pharming is a promising system for cost-effective production of veterinary vaccines. Mediterranean Agricultural Sciences. December 2020;33(3):375-380. doi:10.29136/mediterranean.832889
Chicago Mamedov, Tarlan, Burcu Gulec, and Gulshan Mammadova. “Plant Molecular Pharming Is a Promising System for Cost-Effective Production of Veterinary Vaccines”. Mediterranean Agricultural Sciences 33, no. 3 (December 2020): 375-80. https://doi.org/10.29136/mediterranean.832889.
EndNote Mamedov T, Gulec B, Mammadova G (December 1, 2020) Plant molecular pharming is a promising system for cost-effective production of veterinary vaccines. Mediterranean Agricultural Sciences 33 3 375–380.
IEEE T. Mamedov, B. Gulec, and G. Mammadova, “Plant molecular pharming is a promising system for cost-effective production of veterinary vaccines”, Mediterranean Agricultural Sciences, vol. 33, no. 3, pp. 375–380, 2020, doi: 10.29136/mediterranean.832889.
ISNAD Mamedov, Tarlan et al. “Plant Molecular Pharming Is a Promising System for Cost-Effective Production of Veterinary Vaccines”. Mediterranean Agricultural Sciences 33/3 (December 2020), 375-380. https://doi.org/10.29136/mediterranean.832889.
JAMA Mamedov T, Gulec B, Mammadova G. Plant molecular pharming is a promising system for cost-effective production of veterinary vaccines. Mediterranean Agricultural Sciences. 2020;33:375–380.
MLA Mamedov, Tarlan et al. “Plant Molecular Pharming Is a Promising System for Cost-Effective Production of Veterinary Vaccines”. Mediterranean Agricultural Sciences, vol. 33, no. 3, 2020, pp. 375-80, doi:10.29136/mediterranean.832889.
Vancouver Mamedov T, Gulec B, Mammadova G. Plant molecular pharming is a promising system for cost-effective production of veterinary vaccines. Mediterranean Agricultural Sciences. 2020;33(3):375-80.

Creative Commons License

Mediterranean Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.