Year 2019, Volume 7, Issue 3, Pages 1204 - 1216 2019-07-31

13 Atomlu Cu-Au-Pt Üçlü Metal Nanoalaşımların Yapısal Özellikleri
The Structural Properties Of 13-Atom Cu-Au-Pt Trimetallic Nanoalloys

Songül Taran [1]

16 45

Bu çalışmada, 13 atomlu Cu-Au-Pt üçlü metal nanoalaşımların yapısal özellikleri, üç farklı kompozisyon sistemi ele alınarak incelenmiştir. Cu1AunPt12-n, Au1CunPt12-n ve Pt1CunAu12-n üçlü metal kompozisyonların en kararlı yapıları Basin-Hopping algoritması kullanılarak elde edilmiştir. Tüm kompozisyonlarda ikosahedral yapı gözlenmiştir. Bu ikosahedral yapıların merkezini Cu ve Au atomuna göre daha yüksek yüzey ve bağlanma enerjisi olan Pt atomu oluşturmuştur.

Üçlü metal, Nanoalaşım, Optimizasyon
  • [1] G. Rossi, R. Ferrando, ‘Combining shape-changing with exchange moves in the optimization of nanoalloys,’’ Computational and Theoretical Chemistry, vol. 1107, pp. 66-73, 2017.
  • [2] R. Ferrando, J. Jellinek and R. L. Johnston, “Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles,” Chemical Reviews, vol. 108, no. 3, pp. 846-910, 2008.
  • [3] E. Roduner, “Size matters: why nanomaterials are different,” Chemical Society Reviews, vol. 35 pp. 583-592, 2006.
  • [4] L. V. Redel, Y. Y. Gafner and S. L. Gafner, “Role Of Magic Numbers In Structure Formation In Small Silver Nanoclusters,” Physics of the Solid State, vol. 57, no.10, pp. 2117-2125, 2015.
  • [5] G. Sharma, D. Kumar, A. Kumar, A. H. Al-Muhtaseb, D. Pathania, M. Naushad and G. T. Mola , “Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: A review,” Material Science and Engineering C, vol. 71, pp. 1216-1230, 2017.
  • [6] Z. Zhao, M. Li, D. Cheng and J. Zhu, “Understanding the structural properties and thermal stabilities of Au-Pd-Pt trimetallic clusters,” Chemical Physics, vol. 441, pp. 152-158, 2014.
  • [7] J. Tao, Q. Ji, G. Shao, Z. Li and T. Liu, “Stable structure optimization of Pt-X-Cu (X=Au, Ag, Pd and Rh) trimetallic nanoparticles,” Journal of alloys and compounds, vol. 716, pp. 240-250, 2017.
  • [8] P. C. Jennings, S. Lysgaard, H. A. Hansen and T. Vegge, “Decoupling strain and ligand effects in ternary nanoparticles for improved ORR electrocatalysis,” Phys. Chem. Chem. Phys., vol. 18, pp. 24737-24745, 2016.
  • [9] T. E. Fun, T. D. Liu, J. W. Zheng, G. F. Shao and Y. H. Wen, “Structural optimization of pt-Pd-Au trimetallic nanoparticles by discrete particle swarm algorithms,” J. Mater. Science, vol. 50, pp. 3308-3319, 2015.
  • [10] X. Sun, D. Li, Y. Ding, W. Zhu, S. Guo, Z. L. Wang and S. Sun, “Core/shell Au/CuPt nanoparticles and their dual electrocatalysis for both reduction and oxidation reactions,” Journal of the American Chemical Society, vol. 136, pp. 5745-5749, 2014.
  • [11] X. Wang, L. Zhang, H. Gong, Y. Zhu, H. Zhao and Y. Fu, “Dealloyed PtAuCu electrocatalyst to improve the activity and stability towards both oxygen reductions and methanol oxidation reactions,” Electrochimica Acta, vol. 212, pp. 277-285, 2016.
  • [12] S. Khanal, N. Bhattarai, D. McMaster, D. Bahena, J. J. Velazquez-Salazar and M. Jose-Yacaman, “Highly monodisperse multiple twinned AuCu/Pt trimetallic nanoparticles with high index surfaces,” Phys. Chem. Chem. Phys., vol. 16, pp. 16278-16283, 2014.
  • [13] G. Wu, Y. Sun, X. Wu, R. Chen and Y. Wang, “Large scale structural optimization of trimetallic Cu-Au-Pt clusters up to 147 atoms,” Chemical Physics Letters, vol. 686, pp. 103-110, 2017.
  • [14] R. Subbaraman and S. K. R. S. Sankaranarayanan, “On the correlation between phonon spectr and surface segregation features in Ag-Cu-Ni ternary clusters,” Surface Science., vol. 605, pp. 1595-1605, 2011.
  • [15] G. Wu, Y. Sun, X. Wu, R. Chen and Y. Wang, “Large scale structural optimization of trimetallic Cu-Au-Pt clusters up to 147 atoms,” Chemical Physics Letters, vol. 686, pp. 103-110, 2017.
  • [16] M. Jose-Yacaman, J. A. Ascencio, H. B. Liu and J. Gardea-Torresdey, “Structure shape and stability of nanometric sized particles,” Journal of Vacuum Science & Technology B, vol. 19, pp. 1091-11003, 2001.
  • [17] A. K. Garip, “147 atomlu Co-Pd nanoalaşımların erime dinamiği,” Karaelmas Fen ve Mühendislik Dergisi, c. 6, s. 2, ss. 369-376, 2016.
  • [18] H. Arslan, “Structures and energetic of Palladium-Cobalt binary clusters,” International Journal of Modern Physics C, vol. 19, pp. 1243-1255, 2008.
  • [19] H. Arslan, “Global minima for PdN(N=5-80) clusters described by Sutton-Chen Potential,” International Journal of Modern Physics C, vol. 18, pp. 1351-1359, 2007.
  • [20] D. Bochicchio, F. Negro and R. Ferrando, “Competition between structural motifs in gold-platinum nanoalloys,” Surface Science., vol. 1021, pp. 177-182, 2013.
  • [21] A. Varas, F. A. Granja, J. Rogan and M. Kiwi, “Structural, electronic and magnetic properties of FexCoyNiz (x+y+z=13) clusters: A density functional theory study,” Journal of Magnetism and Magnetic Materials, vol. 394, pp. 325-334, 2015.
  • [22] R. P. Contreras, J. O. J. Sanchez, M. D. Felix, F. A. Granja, A. Fortunelli and A. P. Amarillas, “Empirical-potential global minima and DFT local minima of trimetallic AglAumPtn (l+m+n=13, 19, 33, 38),” Computational Materials Science, vol.141, pp. 30-40, 2018.
  • [23] A. A. Dzhurakhalov, I. Atanosov and M. Hou, “Calculation of binary and ternary metallic immiscible clusters with icosahedral structures,” Physical Review B, vol. 77, pp.115415, 2008.
  • [24] R. P. Gupta, “Lattice relaxation at a metal surface,” Physical Review B, vol.23, pp. 6265-6270, 1981.
  • [25] F. Cleri and V. Rosato, “Tight-binding potentials for transition metals and alloys,” Physical Review B, vol. 48, no. 1, pp. 22-33, 1993.
  • [26] A. Rapallo, G. Rossi, R. Ferrando, A. Fortunelli, B. C. Curley, L. D. Lloyd, G. M. Tarbuck and R. L. Johnston, “Global optimization of bimetallic cluster structures. I. Size-mismatched Ag-Cu, Ag-Ni and Au-Cu systems,” The Journal of Chemical Physics, vol. 122, pp. 194308, 2005.
  • [27] D. J. Wales and J. P. K. Doye, “Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms,” J. Phys. Chem. A, vol.101, pp. 5111-5116, 1997.
  • [28] A. K. Garip, “ A Molecular Dynamics Study: Structures and Thermal Stability of PdmPt(13- m ) Ag42 ternary nanoalloys,” International Journal of Modern Physics C, vol. 29, no. 9, pp. 1850084, 2018.
  • [29] G. H. Wu, Q. M. Liu and X. Wu, “ Geometrical and energetic properties in 38-atom trimetallic Au-Pd-Pt,” Chemical Physics Letters, vol. 620, pp. 92-97, 2015.
  • [30] M. J. Lopez, P. A. Marcos and J. A. Alonso, “ Structural and dynamics properties of Cu-Au bimetallic clusters,” The Journal of Chemical Physics, vol. 104, pp. 1056, 1996.
  • [31] X. Wu, G. Wu, Y. Chen and Y. Qiao, “Structural optimization of Cu -Ag -Au trimetallic clusters by adaptive immune optimization algorithm,” The Journal of Physical Chemistry A, vol. 115, pp. 13316-13323, 2011.
Primary Language tr
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0001-8115-2169
Author: Songül Taran (Primary Author)
Institution: DÜZCE ÜNİVERSİTESİ
Country: Turkey


Dates

Publication Date: July 31, 2019

Bibtex @research article { dubited512614, journal = {Düzce Üniversitesi Bilim ve Teknoloji Dergisi}, issn = {}, eissn = {2148-2446}, address = {Duzce University}, year = {2019}, volume = {7}, pages = {1204 - 1216}, doi = {10.29130/dubited.512614}, title = {13 Atomlu Cu-Au-Pt Üçlü Metal Nanoalaşımların Yapısal Özellikleri}, key = {cite}, author = {Taran, Songül} }
APA Taran, S . (2019). 13 Atomlu Cu-Au-Pt Üçlü Metal Nanoalaşımların Yapısal Özellikleri. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7 (3), 1204-1216. DOI: 10.29130/dubited.512614
MLA Taran, S . "13 Atomlu Cu-Au-Pt Üçlü Metal Nanoalaşımların Yapısal Özellikleri". Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7 (2019): 1204-1216 <http://dergipark.org.tr/dubited/issue/46290/512614>
Chicago Taran, S . "13 Atomlu Cu-Au-Pt Üçlü Metal Nanoalaşımların Yapısal Özellikleri". Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7 (2019): 1204-1216
RIS TY - JOUR T1 - 13 Atomlu Cu-Au-Pt Üçlü Metal Nanoalaşımların Yapısal Özellikleri AU - Songül Taran Y1 - 2019 PY - 2019 N1 - doi: 10.29130/dubited.512614 DO - 10.29130/dubited.512614 T2 - Düzce Üniversitesi Bilim ve Teknoloji Dergisi JF - Journal JO - JOR SP - 1204 EP - 1216 VL - 7 IS - 3 SN - -2148-2446 M3 - doi: 10.29130/dubited.512614 UR - https://doi.org/10.29130/dubited.512614 Y2 - 2019 ER -
EndNote %0 Duzce University Journal of Science and Technology 13 Atomlu Cu-Au-Pt Üçlü Metal Nanoalaşımların Yapısal Özellikleri %A Songül Taran %T 13 Atomlu Cu-Au-Pt Üçlü Metal Nanoalaşımların Yapısal Özellikleri %D 2019 %J Düzce Üniversitesi Bilim ve Teknoloji Dergisi %P -2148-2446 %V 7 %N 3 %R doi: 10.29130/dubited.512614 %U 10.29130/dubited.512614
ISNAD Taran, Songül . "13 Atomlu Cu-Au-Pt Üçlü Metal Nanoalaşımların Yapısal Özellikleri". Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7 / 3 (July 2019): 1204-1216. https://doi.org/10.29130/dubited.512614
AMA Taran S . 13 Atomlu Cu-Au-Pt Üçlü Metal Nanoalaşımların Yapısal Özellikleri. DUBİTED. 2019; 7(3): 1204-1216.
Vancouver Taran S . 13 Atomlu Cu-Au-Pt Üçlü Metal Nanoalaşımların Yapısal Özellikleri. Düzce Üniversitesi Bilim ve Teknoloji Dergisi. 2019; 7(3): 1216-1204.