Araştırma Makalesi
BibTex RIS Kaynak Göster

The Structural Properties Of 13-Atom Cu-Au-Pt Trimetallic Nanoalloys

Yıl 2019, Cilt: 7 Sayı: 3, 1204 - 1216, 31.07.2019
https://doi.org/10.29130/dubited.512614

Öz

Kaynakça

  • [1] G. Rossi, R. Ferrando, ‘Combining shape-changing with exchange moves in the optimization of nanoalloys,’’ Computational and Theoretical Chemistry, vol. 1107, pp. 66-73, 2017.
  • [2] R. Ferrando, J. Jellinek and R. L. Johnston, “Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles,” Chemical Reviews, vol. 108, no. 3, pp. 846-910, 2008.
  • [3] E. Roduner, “Size matters: why nanomaterials are different,” Chemical Society Reviews, vol. 35 pp. 583-592, 2006.
  • [4] L. V. Redel, Y. Y. Gafner and S. L. Gafner, “Role Of Magic Numbers In Structure Formation In Small Silver Nanoclusters,” Physics of the Solid State, vol. 57, no.10, pp. 2117-2125, 2015.
  • [5] G. Sharma, D. Kumar, A. Kumar, A. H. Al-Muhtaseb, D. Pathania, M. Naushad and G. T. Mola , “Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: A review,” Material Science and Engineering C, vol. 71, pp. 1216-1230, 2017.
  • [6] Z. Zhao, M. Li, D. Cheng and J. Zhu, “Understanding the structural properties and thermal stabilities of Au-Pd-Pt trimetallic clusters,” Chemical Physics, vol. 441, pp. 152-158, 2014.
  • [7] J. Tao, Q. Ji, G. Shao, Z. Li and T. Liu, “Stable structure optimization of Pt-X-Cu (X=Au, Ag, Pd and Rh) trimetallic nanoparticles,” Journal of alloys and compounds, vol. 716, pp. 240-250, 2017.
  • [8] P. C. Jennings, S. Lysgaard, H. A. Hansen and T. Vegge, “Decoupling strain and ligand effects in ternary nanoparticles for improved ORR electrocatalysis,” Phys. Chem. Chem. Phys., vol. 18, pp. 24737-24745, 2016.
  • [9] T. E. Fun, T. D. Liu, J. W. Zheng, G. F. Shao and Y. H. Wen, “Structural optimization of pt-Pd-Au trimetallic nanoparticles by discrete particle swarm algorithms,” J. Mater. Science, vol. 50, pp. 3308-3319, 2015.
  • [10] X. Sun, D. Li, Y. Ding, W. Zhu, S. Guo, Z. L. Wang and S. Sun, “Core/shell Au/CuPt nanoparticles and their dual electrocatalysis for both reduction and oxidation reactions,” Journal of the American Chemical Society, vol. 136, pp. 5745-5749, 2014.
  • [11] X. Wang, L. Zhang, H. Gong, Y. Zhu, H. Zhao and Y. Fu, “Dealloyed PtAuCu electrocatalyst to improve the activity and stability towards both oxygen reductions and methanol oxidation reactions,” Electrochimica Acta, vol. 212, pp. 277-285, 2016.
  • [12] S. Khanal, N. Bhattarai, D. McMaster, D. Bahena, J. J. Velazquez-Salazar and M. Jose-Yacaman, “Highly monodisperse multiple twinned AuCu/Pt trimetallic nanoparticles with high index surfaces,” Phys. Chem. Chem. Phys., vol. 16, pp. 16278-16283, 2014.
  • [13] G. Wu, Y. Sun, X. Wu, R. Chen and Y. Wang, “Large scale structural optimization of trimetallic Cu-Au-Pt clusters up to 147 atoms,” Chemical Physics Letters, vol. 686, pp. 103-110, 2017.
  • [14] R. Subbaraman and S. K. R. S. Sankaranarayanan, “On the correlation between phonon spectr and surface segregation features in Ag-Cu-Ni ternary clusters,” Surface Science., vol. 605, pp. 1595-1605, 2011.
  • [15] G. Wu, Y. Sun, X. Wu, R. Chen and Y. Wang, “Large scale structural optimization of trimetallic Cu-Au-Pt clusters up to 147 atoms,” Chemical Physics Letters, vol. 686, pp. 103-110, 2017.
  • [16] M. Jose-Yacaman, J. A. Ascencio, H. B. Liu and J. Gardea-Torresdey, “Structure shape and stability of nanometric sized particles,” Journal of Vacuum Science & Technology B, vol. 19, pp. 1091-11003, 2001.
  • [17] A. K. Garip, “147 atomlu Co-Pd nanoalaşımların erime dinamiği,” Karaelmas Fen ve Mühendislik Dergisi, c. 6, s. 2, ss. 369-376, 2016.
  • [18] H. Arslan, “Structures and energetic of Palladium-Cobalt binary clusters,” International Journal of Modern Physics C, vol. 19, pp. 1243-1255, 2008.
  • [19] H. Arslan, “Global minima for PdN(N=5-80) clusters described by Sutton-Chen Potential,” International Journal of Modern Physics C, vol. 18, pp. 1351-1359, 2007.
  • [20] D. Bochicchio, F. Negro and R. Ferrando, “Competition between structural motifs in gold-platinum nanoalloys,” Surface Science., vol. 1021, pp. 177-182, 2013.
  • [21] A. Varas, F. A. Granja, J. Rogan and M. Kiwi, “Structural, electronic and magnetic properties of FexCoyNiz (x+y+z=13) clusters: A density functional theory study,” Journal of Magnetism and Magnetic Materials, vol. 394, pp. 325-334, 2015.
  • [22] R. P. Contreras, J. O. J. Sanchez, M. D. Felix, F. A. Granja, A. Fortunelli and A. P. Amarillas, “Empirical-potential global minima and DFT local minima of trimetallic AglAumPtn (l+m+n=13, 19, 33, 38),” Computational Materials Science, vol.141, pp. 30-40, 2018.
  • [23] A. A. Dzhurakhalov, I. Atanosov and M. Hou, “Calculation of binary and ternary metallic immiscible clusters with icosahedral structures,” Physical Review B, vol. 77, pp.115415, 2008.
  • [24] R. P. Gupta, “Lattice relaxation at a metal surface,” Physical Review B, vol.23, pp. 6265-6270, 1981.
  • [25] F. Cleri and V. Rosato, “Tight-binding potentials for transition metals and alloys,” Physical Review B, vol. 48, no. 1, pp. 22-33, 1993.
  • [26] A. Rapallo, G. Rossi, R. Ferrando, A. Fortunelli, B. C. Curley, L. D. Lloyd, G. M. Tarbuck and R. L. Johnston, “Global optimization of bimetallic cluster structures. I. Size-mismatched Ag-Cu, Ag-Ni and Au-Cu systems,” The Journal of Chemical Physics, vol. 122, pp. 194308, 2005.
  • [27] D. J. Wales and J. P. K. Doye, “Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms,” J. Phys. Chem. A, vol.101, pp. 5111-5116, 1997.
  • [28] A. K. Garip, “ A Molecular Dynamics Study: Structures and Thermal Stability of PdmPt(13- m ) Ag42 ternary nanoalloys,” International Journal of Modern Physics C, vol. 29, no. 9, pp. 1850084, 2018.
  • [29] G. H. Wu, Q. M. Liu and X. Wu, “ Geometrical and energetic properties in 38-atom trimetallic Au-Pd-Pt,” Chemical Physics Letters, vol. 620, pp. 92-97, 2015.
  • [30] M. J. Lopez, P. A. Marcos and J. A. Alonso, “ Structural and dynamics properties of Cu-Au bimetallic clusters,” The Journal of Chemical Physics, vol. 104, pp. 1056, 1996.
  • [31] X. Wu, G. Wu, Y. Chen and Y. Qiao, “Structural optimization of Cu -Ag -Au trimetallic clusters by adaptive immune optimization algorithm,” The Journal of Physical Chemistry A, vol. 115, pp. 13316-13323, 2011.

13 Atomlu Cu-Au-Pt Üçlü Metal Nanoalaşımların Yapısal Özellikleri

Yıl 2019, Cilt: 7 Sayı: 3, 1204 - 1216, 31.07.2019
https://doi.org/10.29130/dubited.512614

Öz

Bu
çalışmada, 13 atomlu Cu-Au-Pt üçlü metal nanoalaşımların yapısal özellikleri, üç
farklı kompozisyon sistemi ele alınarak incelenmiştir. Cu1AunPt12-n,
Au1CunPt12-n ve Pt1CunAu12-n
üçlü metal kompozisyonların en kararlı yapıları Basin-Hopping algoritması
kullanılarak elde edilmiştir. Tüm kompozisyonlarda ikosahedral yapı
gözlenmiştir. Bu ikosahedral yapıların merkezini Cu ve Au atomuna göre daha
yüksek yüzey ve bağlanma enerjisi olan Pt atomu oluşturmuştur.

Kaynakça

  • [1] G. Rossi, R. Ferrando, ‘Combining shape-changing with exchange moves in the optimization of nanoalloys,’’ Computational and Theoretical Chemistry, vol. 1107, pp. 66-73, 2017.
  • [2] R. Ferrando, J. Jellinek and R. L. Johnston, “Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles,” Chemical Reviews, vol. 108, no. 3, pp. 846-910, 2008.
  • [3] E. Roduner, “Size matters: why nanomaterials are different,” Chemical Society Reviews, vol. 35 pp. 583-592, 2006.
  • [4] L. V. Redel, Y. Y. Gafner and S. L. Gafner, “Role Of Magic Numbers In Structure Formation In Small Silver Nanoclusters,” Physics of the Solid State, vol. 57, no.10, pp. 2117-2125, 2015.
  • [5] G. Sharma, D. Kumar, A. Kumar, A. H. Al-Muhtaseb, D. Pathania, M. Naushad and G. T. Mola , “Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: A review,” Material Science and Engineering C, vol. 71, pp. 1216-1230, 2017.
  • [6] Z. Zhao, M. Li, D. Cheng and J. Zhu, “Understanding the structural properties and thermal stabilities of Au-Pd-Pt trimetallic clusters,” Chemical Physics, vol. 441, pp. 152-158, 2014.
  • [7] J. Tao, Q. Ji, G. Shao, Z. Li and T. Liu, “Stable structure optimization of Pt-X-Cu (X=Au, Ag, Pd and Rh) trimetallic nanoparticles,” Journal of alloys and compounds, vol. 716, pp. 240-250, 2017.
  • [8] P. C. Jennings, S. Lysgaard, H. A. Hansen and T. Vegge, “Decoupling strain and ligand effects in ternary nanoparticles for improved ORR electrocatalysis,” Phys. Chem. Chem. Phys., vol. 18, pp. 24737-24745, 2016.
  • [9] T. E. Fun, T. D. Liu, J. W. Zheng, G. F. Shao and Y. H. Wen, “Structural optimization of pt-Pd-Au trimetallic nanoparticles by discrete particle swarm algorithms,” J. Mater. Science, vol. 50, pp. 3308-3319, 2015.
  • [10] X. Sun, D. Li, Y. Ding, W. Zhu, S. Guo, Z. L. Wang and S. Sun, “Core/shell Au/CuPt nanoparticles and their dual electrocatalysis for both reduction and oxidation reactions,” Journal of the American Chemical Society, vol. 136, pp. 5745-5749, 2014.
  • [11] X. Wang, L. Zhang, H. Gong, Y. Zhu, H. Zhao and Y. Fu, “Dealloyed PtAuCu electrocatalyst to improve the activity and stability towards both oxygen reductions and methanol oxidation reactions,” Electrochimica Acta, vol. 212, pp. 277-285, 2016.
  • [12] S. Khanal, N. Bhattarai, D. McMaster, D. Bahena, J. J. Velazquez-Salazar and M. Jose-Yacaman, “Highly monodisperse multiple twinned AuCu/Pt trimetallic nanoparticles with high index surfaces,” Phys. Chem. Chem. Phys., vol. 16, pp. 16278-16283, 2014.
  • [13] G. Wu, Y. Sun, X. Wu, R. Chen and Y. Wang, “Large scale structural optimization of trimetallic Cu-Au-Pt clusters up to 147 atoms,” Chemical Physics Letters, vol. 686, pp. 103-110, 2017.
  • [14] R. Subbaraman and S. K. R. S. Sankaranarayanan, “On the correlation between phonon spectr and surface segregation features in Ag-Cu-Ni ternary clusters,” Surface Science., vol. 605, pp. 1595-1605, 2011.
  • [15] G. Wu, Y. Sun, X. Wu, R. Chen and Y. Wang, “Large scale structural optimization of trimetallic Cu-Au-Pt clusters up to 147 atoms,” Chemical Physics Letters, vol. 686, pp. 103-110, 2017.
  • [16] M. Jose-Yacaman, J. A. Ascencio, H. B. Liu and J. Gardea-Torresdey, “Structure shape and stability of nanometric sized particles,” Journal of Vacuum Science & Technology B, vol. 19, pp. 1091-11003, 2001.
  • [17] A. K. Garip, “147 atomlu Co-Pd nanoalaşımların erime dinamiği,” Karaelmas Fen ve Mühendislik Dergisi, c. 6, s. 2, ss. 369-376, 2016.
  • [18] H. Arslan, “Structures and energetic of Palladium-Cobalt binary clusters,” International Journal of Modern Physics C, vol. 19, pp. 1243-1255, 2008.
  • [19] H. Arslan, “Global minima for PdN(N=5-80) clusters described by Sutton-Chen Potential,” International Journal of Modern Physics C, vol. 18, pp. 1351-1359, 2007.
  • [20] D. Bochicchio, F. Negro and R. Ferrando, “Competition between structural motifs in gold-platinum nanoalloys,” Surface Science., vol. 1021, pp. 177-182, 2013.
  • [21] A. Varas, F. A. Granja, J. Rogan and M. Kiwi, “Structural, electronic and magnetic properties of FexCoyNiz (x+y+z=13) clusters: A density functional theory study,” Journal of Magnetism and Magnetic Materials, vol. 394, pp. 325-334, 2015.
  • [22] R. P. Contreras, J. O. J. Sanchez, M. D. Felix, F. A. Granja, A. Fortunelli and A. P. Amarillas, “Empirical-potential global minima and DFT local minima of trimetallic AglAumPtn (l+m+n=13, 19, 33, 38),” Computational Materials Science, vol.141, pp. 30-40, 2018.
  • [23] A. A. Dzhurakhalov, I. Atanosov and M. Hou, “Calculation of binary and ternary metallic immiscible clusters with icosahedral structures,” Physical Review B, vol. 77, pp.115415, 2008.
  • [24] R. P. Gupta, “Lattice relaxation at a metal surface,” Physical Review B, vol.23, pp. 6265-6270, 1981.
  • [25] F. Cleri and V. Rosato, “Tight-binding potentials for transition metals and alloys,” Physical Review B, vol. 48, no. 1, pp. 22-33, 1993.
  • [26] A. Rapallo, G. Rossi, R. Ferrando, A. Fortunelli, B. C. Curley, L. D. Lloyd, G. M. Tarbuck and R. L. Johnston, “Global optimization of bimetallic cluster structures. I. Size-mismatched Ag-Cu, Ag-Ni and Au-Cu systems,” The Journal of Chemical Physics, vol. 122, pp. 194308, 2005.
  • [27] D. J. Wales and J. P. K. Doye, “Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms,” J. Phys. Chem. A, vol.101, pp. 5111-5116, 1997.
  • [28] A. K. Garip, “ A Molecular Dynamics Study: Structures and Thermal Stability of PdmPt(13- m ) Ag42 ternary nanoalloys,” International Journal of Modern Physics C, vol. 29, no. 9, pp. 1850084, 2018.
  • [29] G. H. Wu, Q. M. Liu and X. Wu, “ Geometrical and energetic properties in 38-atom trimetallic Au-Pd-Pt,” Chemical Physics Letters, vol. 620, pp. 92-97, 2015.
  • [30] M. J. Lopez, P. A. Marcos and J. A. Alonso, “ Structural and dynamics properties of Cu-Au bimetallic clusters,” The Journal of Chemical Physics, vol. 104, pp. 1056, 1996.
  • [31] X. Wu, G. Wu, Y. Chen and Y. Qiao, “Structural optimization of Cu -Ag -Au trimetallic clusters by adaptive immune optimization algorithm,” The Journal of Physical Chemistry A, vol. 115, pp. 13316-13323, 2011.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Songül Taran 0000-0001-8115-2169

Yayımlanma Tarihi 31 Temmuz 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 3

Kaynak Göster

APA Taran, S. (2019). 13 Atomlu Cu-Au-Pt Üçlü Metal Nanoalaşımların Yapısal Özellikleri. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 7(3), 1204-1216. https://doi.org/10.29130/dubited.512614
AMA Taran S. 13 Atomlu Cu-Au-Pt Üçlü Metal Nanoalaşımların Yapısal Özellikleri. DÜBİTED. Temmuz 2019;7(3):1204-1216. doi:10.29130/dubited.512614
Chicago Taran, Songül. “13 Atomlu Cu-Au-Pt Üçlü Metal Nanoalaşımların Yapısal Özellikleri”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 7, sy. 3 (Temmuz 2019): 1204-16. https://doi.org/10.29130/dubited.512614.
EndNote Taran S (01 Temmuz 2019) 13 Atomlu Cu-Au-Pt Üçlü Metal Nanoalaşımların Yapısal Özellikleri. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7 3 1204–1216.
IEEE S. Taran, “13 Atomlu Cu-Au-Pt Üçlü Metal Nanoalaşımların Yapısal Özellikleri”, DÜBİTED, c. 7, sy. 3, ss. 1204–1216, 2019, doi: 10.29130/dubited.512614.
ISNAD Taran, Songül. “13 Atomlu Cu-Au-Pt Üçlü Metal Nanoalaşımların Yapısal Özellikleri”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7/3 (Temmuz 2019), 1204-1216. https://doi.org/10.29130/dubited.512614.
JAMA Taran S. 13 Atomlu Cu-Au-Pt Üçlü Metal Nanoalaşımların Yapısal Özellikleri. DÜBİTED. 2019;7:1204–1216.
MLA Taran, Songül. “13 Atomlu Cu-Au-Pt Üçlü Metal Nanoalaşımların Yapısal Özellikleri”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, c. 7, sy. 3, 2019, ss. 1204-16, doi:10.29130/dubited.512614.
Vancouver Taran S. 13 Atomlu Cu-Au-Pt Üçlü Metal Nanoalaşımların Yapısal Özellikleri. DÜBİTED. 2019;7(3):1204-16.