Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of Different Harvest Stage on Chemical Composition, In Vitro Gas and Methane Production of Cotton Thistle (Onopordum acanthium)

Yıl 2019, , 13 - 18, 30.06.2019
https://doi.org/10.25308/aduziraat.448250

Öz

The
aim of the current experiment was carried out to determine the effect of different
harvesting time on the chemical composition, in vitro gas production, methane production, metabolisable energy, organic
matter digestibility of cotton thistle. The harvesting time had a significant
effect on the chemical composition, gas production, methane production, organic
matter digestibility and metabolisable energy of cotton thistle
(P<0.01). The dry matter, ether extract, neutral detergent
fiber, acid detergent fiber and methane production (%) increased with
advancing maturity
whereas crude ash, crude protein, gas production (ml), methane production (ml),
organic matter digestibility and metabolisable energy decreased with
advancing maturity. Dry
matter, crude protein, ether extract, neutral detergent fiber, acid detergent
fiber contents of cotton thistle ranged from 16.22 to 33.03%, 8.72 to 15.09%,
2.68 to 4.37%, 38.25 to 60.13% and 27.08 to 42.91% respectively. Gas production
(mL), methane production (mL), methane production (%), organic matter
digestibility and metabolisable energy of cotton thistle ranged from 32.84 to
48.49 ml, 4.83 to 5.94 mL, 12.25 to 14.73%, 49.71 to 63.18% and 7.46 to 9.97
MJ/kg DM. Further
in vivo studies are
required to determine the effect of cotton thistle on the feed intake and performance
of ruminant animals. 

Kaynakça

  • AOAC (1990) Official Method of Analysis. Association of Official Analytical Chemists, 15th Edition, Washington, DC. USA.
  • Aydın R, Kamalak A, Canbolat O (2007) Effect of Maturity on the Potential Nutritive Value of Burr Medic (Medicago polymorpha) Hay. Journal of Biological Sciences 7(2): 300-304.
  • Buxton DR (1996) Quality Related Characteristics of Forages as Influenced by Plant Environment and Agronomic Factors. Animal Feed Science and Technology 59: 37-49.
  • Canbolat O, Kamalak A, Ozkan C O, Erol A, Sahin M, Karakas E, Ozkose E (2006) Prediction of Relative Feed Value of Alfalfa Hays Harvested at Different Maturity Stages Using In Vitro Gas Production. Livestock Research for Rural Development. Volume 18, Article #27. Retrieved June 14, 2017, from http://www.lrrd.org/lrrd18/2/canb18027.htm
  • Canbolat O (2012) Potential Nutritive Value of Field Bindweed (Convolvulus arvensis L) Hay Harvested at Three Different Maturity Stages. Journal of the Faculty of Veterinary Medicine, Kafkas University 18(2): 331-335.
  • Goel G, Makkar HPS, Becker K (2008) Effect of Sesbania sesban and Carduus pycnocephalus Leaves and Fenugreek (Trigonella foenum-graecum L) Seeds and Their Extract on Partitioning of Nutrients from Roughage-and Concentrate-based Feeds to Methane. Animal Feed Science and Technology 147(1-3): 72-89.
  • Gülşen N, Çoskun B Umuculılar HD, Dural H (2004) Prediction of Native Forage, Prangos uechritzii, Using of In Situ and In Vitro Measurements. Journal of Arid Environment 56: 167-179.
  • Guven I (2012) Effect of Species on Nutritive Value of Mulberry Leaves. Journal of the Faculty of Veterinary Medicine, Kafkas University 18 (5): 865-869.
  • Johnson KA, Johnson DE (1995) Methane Emissions from Cattle. Journal of Animal Science 73: 2483–2492.
  • Kamalak A, Canbolat, O, Gurbuz Y, Erol A, Ozay O (2005a). Effect of Maturity Stage on Chemical Composition, In Vitro and In Situ Dry Matter Degradation of Tumbleweed Hay (Gundelia tournefortii L). Small Ruminant Research 58: 149-156.
  • Kamalak A, Canbolat, O, Gurbuz Y, Özkan CÖ, Kizilsimsek M (2005b). Determination of Nutritive Value of Wild Mustard, Sinapsis arvensis Harvested at Different Maturity Stages Using In Situ and In Vitro Measurements. Asian-Australian Journal of Animal Science 18(9): 1249–1254.
  • Kamalak A, Atalay AI, Ozkan CO, Kaya E, Tatliyer A (2011) Determination of Potential Nutritive Value of Trigonella kotshi Fenzl Hay Harvested at Three Different Maturity Stages. Journal of the Faculty of Veterinary Medicine, Kafkas University 17(4): 635-640.
  • Kamalak A, Canbolat O (2010) Determination of Nutritive Value of Wild Narrow-Leaved Clover (Trifolium angustifolium) Harvested at Three Maturity Stages Using Chemical Composition and In Vitro Gas Production. Tropical Grassland 44(2): 128-133.
  • Kaplan M, Üke Ö, Kale H, Yavuz S, Kurt Ö, Atalay AA (2016) Olgunlaşma Döneminin Teff Otunun Potansiyel Besleme Değeri, Gaz ve Metan Üretimine Etkisi. Iğdır Üniversitesi Fen Bilimleri Dergisi, 6(4): 181-186.
  • Kaplan M, Kamalak A, Kasra AA, Guven I (2014a). Effect of Maturity Stages on Potential Nutritive Value, Methane Production and Condensed Tannin Content of Sanguisorba minor Hay. Journal of the Faculty of Veterinary Medicine, Kafkas University 20(3): 445-449.
  • Kaplan M, Kamalak A, Ozkan CO, Atalay AI (2014b) Effect of Vegetative Stages on the Potential Nutritive Value, Methane Production and Condensed Tannin Content of Onobrychis caput-galli Hay. Journal of the Faculty of Veterinary Medicine, Harran University 3(1): 1-5.
  • Kaya E, Kamalak A (2012) Potential Nutritive Value and Condensed Tannin Contents of Acorns from Different Oak Species. Journal of the Faculty of Veterinary Medicine, Kafkas University 18(6): 1061-1066.
  • Lopez S, Makkar HPS, Soliva CR (2010) Screening Plants and Plant Products for Methane Inhibitors. In: Vercoe PE, Makkar HPS, Schlink A, (Eds): In Vitro Screening of Plant Resources for Extra Nutritional Attributes in Ruminants: Nuclear and Related Methodologies. London, New York, pp. 191-231.
  • Macheboeuf D, Coudert L, Bergeault R, Laliere G, Niderkorn V (2014) Screening of Plants from Diversified Natural Grassland for Their Potential to Combine High Digestibility and Low Methane and Ammonia Production. Animal 8(1): 1797-1806.
  • Menke HH, Steingass H (1988) Estimation of the Energetic Feed Value Obtained from Chemical Analysis and In Vitro Gas Production Using Rumen Fluid. Animal Research and Development 28: 7-55.
  • Menke KH, Raab L, Salewski A, Steingass H, Fritz D, Schneider W (1979) The Estimation of Digestibility and Metabolizable Energy Content of Ruminant Feedstuffs from the Gas Production When They Incubated with Rumen Liquor In Vitro. Journal of Agricultural Science (Cambridge) 92: 217-222.
  • Morrison JM (1980) Changes in the Lignin and Hemicellulose Concentration of Ten Varieties of Temperate Grasses with Increasing Maturity. Grass and Forage Science 32: 287-293.
  • Mupangwa JF, Ngongoni NT, Hamudikuwanda H (2003) Effects of Stage of Maturity and Method of Drying on In Situ Nitrogen Degradability of Fresh Herbage of Cassia rotundifolia, Lablab purpureus and Macroptilium atropurpureum. Livestock Research for Rural Development 15(5).
  • Üke Ö, Kale H, Kaplan M, Kamalak A (2017) Olgunlaşma Döneminin Kiona (Chenoppodium quinoa Willd.)’da Ot Verimi ve Kalitesi ile Gaz ve Metan Üretimine Etkisi. KSU Doga Bilimleri Dergisi 20(1): 42-46.
  • Ulger I, Kamalak A, Kurt O, Kaya E, Guven I (2017) Comparison of the Chemical Composition and Anti-methanogenic Potential of Liquidamber orientalis Leaves with Laurus nobilis and Eucalyptus globulus Using an In Vtro Gas Production Technique. Ciencia Investigacion Agraria 44(1): 75-82.
  • Valente ME, Borreani G, Peiretti PG, Tobacco E (2000) Codified Morphological Stage for Predicting Digestibility of Italian Ryegrass during the Spring Cycle. Agronomy Journal 92: 967–973.
  • Van Soest PJ (1994) Nutritional Ecology of Ruminants. 2 nd ed. Cornell University Press Ithaca, NY, USA.
  • Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science 74(10): 3583-3597
  • Wilson JR, Denium H, Engels EM (1991) Temperature Effects on Anatomy and Digestibility of Leaf and Stem of Tropical and Temperate Forage Species. Netherlands Journal of Agricultural Science 39: 31-48.

Farklı Hasat Zamanının Pamuk Dikeninin (Onopordum acanthium) Kimyasal Kompozisyonu, İn Vitro Gaz ve Metan Üretimi Üzerine Etkisi

Yıl 2019, , 13 - 18, 30.06.2019
https://doi.org/10.25308/aduziraat.448250

Öz

Bu
çalışmanın amacı, farklı hasat zamanının pamuk dikeninin (
Onopordum acanthium) kimyasal kompozisyon, in vitro gaz üretimi, metan üretimi, metabolik
enerji (ME) ve organik madde sindirim derecesi (OMSD) üzerine etkisini
belirlemek için yapılmıştır. Hasat zamanı pamuk dikeninin kimyasal kompozisyonunu,
in vitro gaz üretimi, metan üretimi, ME, OMSD’i
önemli derecede etkilemiştir (P<0.01). Hasat zamanının ilerlemesiyle
birlikte pamuk dikeninin kuru madde (KM), ham yağ (HY), nötral deterjan fiber
(NDF), asit deterjan fiber (ADF) ve metan (%) içeriği artarken, ham kül (HK),
ham protein (HP),
in vitro gaz
üretimi (ml), metan üretimi (ml), OMSD ve ME değerleri ise azalmıştır. Pamuk
dikeninin
KM, HP, HY, NDF ve ADF içerikleri
sırasıyla; %16.22 ile 33.03, %8.72 ile 15.09, %2.68 ile 4.37, %38.25 ile 60.13
ve %27.08 ile 42.91 arasında değişmiştir. Pamuk dikenin in vitro gaz üretimi (mL), metan üretimi (mL), metan gazı (%), OMSD
ve ME sırasıyla 32.84 ile 48.49 mL; 4.83 ile 5.94 mL, %12.25 ile 14.73, %49.71
ile 63.18 ve 7.46 ile 9.97 MJ/kg KM arasında değişmiştir. Bundan sonra pamuk dikenin ruminant
hayvanların yem tüketimine ve performansına etkisine belirlenmek için
in vivo çalışmalara ihtiyaç vardır.       

Kaynakça

  • AOAC (1990) Official Method of Analysis. Association of Official Analytical Chemists, 15th Edition, Washington, DC. USA.
  • Aydın R, Kamalak A, Canbolat O (2007) Effect of Maturity on the Potential Nutritive Value of Burr Medic (Medicago polymorpha) Hay. Journal of Biological Sciences 7(2): 300-304.
  • Buxton DR (1996) Quality Related Characteristics of Forages as Influenced by Plant Environment and Agronomic Factors. Animal Feed Science and Technology 59: 37-49.
  • Canbolat O, Kamalak A, Ozkan C O, Erol A, Sahin M, Karakas E, Ozkose E (2006) Prediction of Relative Feed Value of Alfalfa Hays Harvested at Different Maturity Stages Using In Vitro Gas Production. Livestock Research for Rural Development. Volume 18, Article #27. Retrieved June 14, 2017, from http://www.lrrd.org/lrrd18/2/canb18027.htm
  • Canbolat O (2012) Potential Nutritive Value of Field Bindweed (Convolvulus arvensis L) Hay Harvested at Three Different Maturity Stages. Journal of the Faculty of Veterinary Medicine, Kafkas University 18(2): 331-335.
  • Goel G, Makkar HPS, Becker K (2008) Effect of Sesbania sesban and Carduus pycnocephalus Leaves and Fenugreek (Trigonella foenum-graecum L) Seeds and Their Extract on Partitioning of Nutrients from Roughage-and Concentrate-based Feeds to Methane. Animal Feed Science and Technology 147(1-3): 72-89.
  • Gülşen N, Çoskun B Umuculılar HD, Dural H (2004) Prediction of Native Forage, Prangos uechritzii, Using of In Situ and In Vitro Measurements. Journal of Arid Environment 56: 167-179.
  • Guven I (2012) Effect of Species on Nutritive Value of Mulberry Leaves. Journal of the Faculty of Veterinary Medicine, Kafkas University 18 (5): 865-869.
  • Johnson KA, Johnson DE (1995) Methane Emissions from Cattle. Journal of Animal Science 73: 2483–2492.
  • Kamalak A, Canbolat, O, Gurbuz Y, Erol A, Ozay O (2005a). Effect of Maturity Stage on Chemical Composition, In Vitro and In Situ Dry Matter Degradation of Tumbleweed Hay (Gundelia tournefortii L). Small Ruminant Research 58: 149-156.
  • Kamalak A, Canbolat, O, Gurbuz Y, Özkan CÖ, Kizilsimsek M (2005b). Determination of Nutritive Value of Wild Mustard, Sinapsis arvensis Harvested at Different Maturity Stages Using In Situ and In Vitro Measurements. Asian-Australian Journal of Animal Science 18(9): 1249–1254.
  • Kamalak A, Atalay AI, Ozkan CO, Kaya E, Tatliyer A (2011) Determination of Potential Nutritive Value of Trigonella kotshi Fenzl Hay Harvested at Three Different Maturity Stages. Journal of the Faculty of Veterinary Medicine, Kafkas University 17(4): 635-640.
  • Kamalak A, Canbolat O (2010) Determination of Nutritive Value of Wild Narrow-Leaved Clover (Trifolium angustifolium) Harvested at Three Maturity Stages Using Chemical Composition and In Vitro Gas Production. Tropical Grassland 44(2): 128-133.
  • Kaplan M, Üke Ö, Kale H, Yavuz S, Kurt Ö, Atalay AA (2016) Olgunlaşma Döneminin Teff Otunun Potansiyel Besleme Değeri, Gaz ve Metan Üretimine Etkisi. Iğdır Üniversitesi Fen Bilimleri Dergisi, 6(4): 181-186.
  • Kaplan M, Kamalak A, Kasra AA, Guven I (2014a). Effect of Maturity Stages on Potential Nutritive Value, Methane Production and Condensed Tannin Content of Sanguisorba minor Hay. Journal of the Faculty of Veterinary Medicine, Kafkas University 20(3): 445-449.
  • Kaplan M, Kamalak A, Ozkan CO, Atalay AI (2014b) Effect of Vegetative Stages on the Potential Nutritive Value, Methane Production and Condensed Tannin Content of Onobrychis caput-galli Hay. Journal of the Faculty of Veterinary Medicine, Harran University 3(1): 1-5.
  • Kaya E, Kamalak A (2012) Potential Nutritive Value and Condensed Tannin Contents of Acorns from Different Oak Species. Journal of the Faculty of Veterinary Medicine, Kafkas University 18(6): 1061-1066.
  • Lopez S, Makkar HPS, Soliva CR (2010) Screening Plants and Plant Products for Methane Inhibitors. In: Vercoe PE, Makkar HPS, Schlink A, (Eds): In Vitro Screening of Plant Resources for Extra Nutritional Attributes in Ruminants: Nuclear and Related Methodologies. London, New York, pp. 191-231.
  • Macheboeuf D, Coudert L, Bergeault R, Laliere G, Niderkorn V (2014) Screening of Plants from Diversified Natural Grassland for Their Potential to Combine High Digestibility and Low Methane and Ammonia Production. Animal 8(1): 1797-1806.
  • Menke HH, Steingass H (1988) Estimation of the Energetic Feed Value Obtained from Chemical Analysis and In Vitro Gas Production Using Rumen Fluid. Animal Research and Development 28: 7-55.
  • Menke KH, Raab L, Salewski A, Steingass H, Fritz D, Schneider W (1979) The Estimation of Digestibility and Metabolizable Energy Content of Ruminant Feedstuffs from the Gas Production When They Incubated with Rumen Liquor In Vitro. Journal of Agricultural Science (Cambridge) 92: 217-222.
  • Morrison JM (1980) Changes in the Lignin and Hemicellulose Concentration of Ten Varieties of Temperate Grasses with Increasing Maturity. Grass and Forage Science 32: 287-293.
  • Mupangwa JF, Ngongoni NT, Hamudikuwanda H (2003) Effects of Stage of Maturity and Method of Drying on In Situ Nitrogen Degradability of Fresh Herbage of Cassia rotundifolia, Lablab purpureus and Macroptilium atropurpureum. Livestock Research for Rural Development 15(5).
  • Üke Ö, Kale H, Kaplan M, Kamalak A (2017) Olgunlaşma Döneminin Kiona (Chenoppodium quinoa Willd.)’da Ot Verimi ve Kalitesi ile Gaz ve Metan Üretimine Etkisi. KSU Doga Bilimleri Dergisi 20(1): 42-46.
  • Ulger I, Kamalak A, Kurt O, Kaya E, Guven I (2017) Comparison of the Chemical Composition and Anti-methanogenic Potential of Liquidamber orientalis Leaves with Laurus nobilis and Eucalyptus globulus Using an In Vtro Gas Production Technique. Ciencia Investigacion Agraria 44(1): 75-82.
  • Valente ME, Borreani G, Peiretti PG, Tobacco E (2000) Codified Morphological Stage for Predicting Digestibility of Italian Ryegrass during the Spring Cycle. Agronomy Journal 92: 967–973.
  • Van Soest PJ (1994) Nutritional Ecology of Ruminants. 2 nd ed. Cornell University Press Ithaca, NY, USA.
  • Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science 74(10): 3583-3597
  • Wilson JR, Denium H, Engels EM (1991) Temperature Effects on Anatomy and Digestibility of Leaf and Stem of Tropical and Temperate Forage Species. Netherlands Journal of Agricultural Science 39: 31-48.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği
Bölüm Araştırma
Yazarlar

Emre Ceylan Bu kişi benim

Adem Kamalak

Yayımlanma Tarihi 30 Haziran 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Ceylan, E., & Kamalak, A. (2019). Farklı Hasat Zamanının Pamuk Dikeninin (Onopordum acanthium) Kimyasal Kompozisyonu, İn Vitro Gaz ve Metan Üretimi Üzerine Etkisi. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 16(1), 13-18. https://doi.org/10.25308/aduziraat.448250
AMA Ceylan E, Kamalak A. Farklı Hasat Zamanının Pamuk Dikeninin (Onopordum acanthium) Kimyasal Kompozisyonu, İn Vitro Gaz ve Metan Üretimi Üzerine Etkisi. ADÜ ZİRAAT DERG. Haziran 2019;16(1):13-18. doi:10.25308/aduziraat.448250
Chicago Ceylan, Emre, ve Adem Kamalak. “Farklı Hasat Zamanının Pamuk Dikeninin (Onopordum Acanthium) Kimyasal Kompozisyonu, İn Vitro Gaz Ve Metan Üretimi Üzerine Etkisi”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 16, sy. 1 (Haziran 2019): 13-18. https://doi.org/10.25308/aduziraat.448250.
EndNote Ceylan E, Kamalak A (01 Haziran 2019) Farklı Hasat Zamanının Pamuk Dikeninin (Onopordum acanthium) Kimyasal Kompozisyonu, İn Vitro Gaz ve Metan Üretimi Üzerine Etkisi. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 16 1 13–18.
IEEE E. Ceylan ve A. Kamalak, “Farklı Hasat Zamanının Pamuk Dikeninin (Onopordum acanthium) Kimyasal Kompozisyonu, İn Vitro Gaz ve Metan Üretimi Üzerine Etkisi”, ADÜ ZİRAAT DERG, c. 16, sy. 1, ss. 13–18, 2019, doi: 10.25308/aduziraat.448250.
ISNAD Ceylan, Emre - Kamalak, Adem. “Farklı Hasat Zamanının Pamuk Dikeninin (Onopordum Acanthium) Kimyasal Kompozisyonu, İn Vitro Gaz Ve Metan Üretimi Üzerine Etkisi”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 16/1 (Haziran 2019), 13-18. https://doi.org/10.25308/aduziraat.448250.
JAMA Ceylan E, Kamalak A. Farklı Hasat Zamanının Pamuk Dikeninin (Onopordum acanthium) Kimyasal Kompozisyonu, İn Vitro Gaz ve Metan Üretimi Üzerine Etkisi. ADÜ ZİRAAT DERG. 2019;16:13–18.
MLA Ceylan, Emre ve Adem Kamalak. “Farklı Hasat Zamanının Pamuk Dikeninin (Onopordum Acanthium) Kimyasal Kompozisyonu, İn Vitro Gaz Ve Metan Üretimi Üzerine Etkisi”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, c. 16, sy. 1, 2019, ss. 13-18, doi:10.25308/aduziraat.448250.
Vancouver Ceylan E, Kamalak A. Farklı Hasat Zamanının Pamuk Dikeninin (Onopordum acanthium) Kimyasal Kompozisyonu, İn Vitro Gaz ve Metan Üretimi Üzerine Etkisi. ADÜ ZİRAAT DERG. 2019;16(1):13-8.