Review
BibTex RIS Cite

Antifungal Activity Producing Lactic Acid Bacteria

Year 2017, Volume: 14 Issue: 1, 79 - 85, 04.07.2017
https://doi.org/10.25308/aduziraat.295740

Abstract

Molds and yeasts are highly resistant microorganisms that have the ability to grow in all food. Food spoilages caused by molds and yeasts are important issue for human health and food safety. Molds may also produce a variety of mycotoxins that damage health.  To prevent harmful microorganisms, application of biopreservative agents can be considered new, alternative or complementary for other applications such as thermal process, drying and using of chemical additives. In this respect, the use of biocontrol or microorganisms or their metabolites to prevent food deterioration and to extend the shelf life of foods is very important. Lactic acid bacteria (LAB) that play role in traditional production of various fermented foods and their metabolites are known to have inhibition on several yeasts and molds types and can be used as biopreservatives. Recently, a large number of antifungal metabolites such as cyclic dipeptides, proteinaceous substances and fatty acids, have been isolated from the Lactic acid bacteria (LAB). In this review, current information on antifungal LAB is brought up.


References

  • Adams MR, Hall CJ (1988) Growth İnhibition of Food–borne Pathogens by Lactic Acid and Acetic Acids and Their Mixtures. International Journal of Food Science and Technology 23: 287–292.
  • Axelsson L (2004) Lactic acid bacteria:Classification and Physiology.In .Salminen A, Von Wright A. Ouwehand (Eds.),Lactic acid bacteria.Microbiology and functional aspects, NT:Marcel Dekker, Newyork, 1-66.
  • Batish VK, Roy U, Lal R,  Grover S (1997) Antifungal Attributes of Lactic Acid Bacteria – A Review. Critical Reviews in Biotechnology 17: 209–225.
  • Cabo ML, Braber AF, Koenraad PMFJ (2002) Apparent Antifungal Activity of Several Lactic Acid Bacteria against Penicillium Discolor due to Acetic Acid in The Medium. Journal of Food Protection 65: 1309–1316.
  • Chung TC, Axelsson L, Lindgren SE,  Dobrogosz WJ (1989) In Vitro Studies on Reuterin Synthesis by Lactobacillus reuteri. Microbial Ecology in Health and Disease 2: 137–144.
  • Cizeikiene D, Juodeikiene G, Paskevicius A, Bartkiene E (2013) Antimicrobial Activity of Lactic Acid Bacteria against Pathogenic and Spoilage Microorganism Isolated from Food and Their Control in Wheat Bread. Food Control 31: 539-545.
  • Claisse O, Lonvaud-Funel A (2000) Assimilation of Glycerol by a Strain of Lactobacillus collinoides Isolated from Cider.  Food Microbiology 17: 513–519.
  • Corsetti A, Gobbetti M, Rossi J, Damiani P (1998) Antimould Activity of Sourdough Lactic Acid Bacteria: Identification of a Mixture of Organic Acids Produced by Lactobacillus sanfrancisco CB1. Applied Microbiology and Biotechnology 50:253–256.
  • Crowley S, Mahony J, van Sinderen D (2013) Current Perspectives on Antifungal Lactic Acid Bacteria as Natural Bio-preservatives. Trends in Food Science and Technology 33(2): 93-109.
  • Dal Bello F, Clarke CI, Ryan LAM, Ulmer H, Schober TJ, Strom K, Arendt EK (2007) Improvement of the Quality and Shelf Life of Wheat Bread by Fermentation with the Antifungal Strain Lactobacillus plantarum FST 1.7. Journal of Cereal Science 45:309–318.
  • Delavenne E, Ismail R, Pawtowski A, Mounier J,  Barbier, B (2012) Assessment of Lactobacilli Strains as Yoghurt Bioprotective Cultures. Food Control 30: 206-213.
  • Gajbhiye MH, Kapadnis BP (2016) Antifungal-activity-Producing Lactic Acid Bacteria as Biocontrol Agents in Plants. Biocontrol Science and Technology 26(11):1451-1470.
  • Garcha S, Natt NK (2011) In Situ Control of Food Spoilage Fungus Using Lactobacillus acidophilus NCDC 291. Journal of Food Science and Technology 49: 643-648.
  • Gerez CL, Torino, MI, Rollán G, De Valdez GF (2009) Prevention of Bread Mould Spoilage by Using Lactic Acid Bacteria with Antifungal Properties Food control 20(2): 144-148.
  • Gerez CL, Carbajo MS, Rollan G, Torres GL,  Font de Valdez G (2010) Inhibition of Citrus Fungal Pathogens by Using Lactic Acid Bacteria. Journal of Food Science:75, 354–359.
  • Gould GW (1996) Methods for Preservation and Extension of Shelf Life. International Journal of Food Microbiology 33: 51–64.
  • Gourama H, Bullerman LB (1997) Anti-aflatoxigenic Activity of Lactobacillus casei ssp. pseudoplantarum. International Journal of Food Microbiology 34: 131–143.
  • Kamata M, Toyomasu R, Suzuki D, Tanaka T (1986) D-phenyllactic acid Production by Brevibacterium or Corynebacterium. Patent JP 86108396.
  • Kandler O (1983) Carbohydrate Metabolism in Lactic Acid Bacteria. Antoine van Leuwenhoek 49: 202–224.
  • Kwak MK, Liu R, Kim MK, Moon D, Kim AH, Song SH, Kangn AO (2014) Cyclic Dipeptides from Lactic Acid Bacteria Inhibit the Proliferation of Pathogenic Fungi. Journal of Microbiology 52:64–70.
  • Laitila  A, Alakomi H L, Raaska L, Mattila Sandholm T, Haikara A (2002) Antifungal Activities of Two Lactobacillus plantarum Strains against Fusarium Moulds in Vitro and in Malting of Barley. Journal of Applied Microbiology 93(4): 566-576.
  • Lan W, Chen Y, Wu H, Yanagida F (2012) Bio-protective Potential of Lactic Acid Bacteria Isolated from Fermented Wax Gourd. Folia Microbiologica 57: 90–105
  • Lavermicocca P, Valerio F, Evidente A, Lazzaroni S, Corsetti A, Gobbetti M (2000) Purification and Characterization of Novel Antifungal Compounds from the Sourdough Lactobacillus plantarum Strain 21B. Applied and Environmental Microbiology 66: 4084–4090.
  • Lind H, Sjogren J, Gohil S, Kenne L, Schnurer J, Broberg A (2007) Antifungal compounds from cultures of dairy propionibacteria type strains. FEMS Microbiology Letters 271: 310–315.
  • Magnusson J, Schnürer J (2001) Lactobacillus coryniformis subsp. coryniformis Strain Si3 Produces a Broad-spectrum Proteinaceous Antifungal Compound. Applied and Environmental Microbiology 67(1): 1-5.
  • Mandal V, Sen SK, Mandal  N C (2007) Detection, Isolation and Partial Characterization of Antifungal Compound (s) Produced by Pediococcus acidilactici LAB 5. Natural Product Communications 2(6):671-674.
  • Muhialdini BJ, Hassan Z, Sadon, S K, Zulkifli NA, Azfari AA (2011) Effect of pH and Heat Treatment on Antifungal Activity of Lactobacillus fermentum Te007, Lactobacillus pentosus G004 and Pediococcus pentosaceus Te010. Innovative Romanian Food Biotechnology 8: 41-53.
  • Munoz R, Arena ME, Silva J, Gonzalez SN (2010) Inhibition of Mycotoxin –producing Aspergillus nomius VSC 23 by Lactic Acid Bacteria and Saccharomyces cerevisiae. Brazilian Journal of Microbiology 41: 1019–1026.
  • Nakanishi K, Tokuda H, Ando T, Yajima M, Nakajima T, Tanaka O, Ohmomo S (2002) Screening of Lactic Acid Bacteria Having the Ability to Produce Reuterin. Japanese Journal of Lactic Acid Bacteria 13: 37–45.
  • Ndagano D, Lamoureux T, Dortu C, Vandermoten S, Thonart P (2011) Antifungal Activity of 2 Lactic Acid Bacteria of the Weissella Genus Isolated from Food. Journal of Food Science 76: M305–M311.
  • Niku-Paavola ML, Laitila A, Mattila-Sandholm T, Haikara A (1999) New Types of Antimicrobials Produced by Lactobacillus plantarum. Journal of Applied Microbiology 86:29–35.
  • Okkers DJ, Dicks LM, Silvester M, Joubert JJ, Odendaal, HJ (1999) Characterization of Pentocin TV35b, a Bacteriocin-like Peptide Isolated from Lactobacillus pentosus with a Fungistatic Effect on Candida albicans. Journal of Applied Microbiology 87: 726–734.
  • Orla-Jensen S (1942) The lactic acid bacteria (Vol. 2, No. 3). Ejnar Munksgaard.
  • Piper P, Calderon OC, Hatzixanthis K, Mollapour M (2001) Weak Acid Adaptation: The Stress Response that confers Yeasts with Resistance to Organic Acid Food Preservatives. Microbiology 147:2635–2642.
  • Prema P, Smila D, Palavesam A, Immanuel G (2010) Production and Characterization of an Antifungal Compound (3-Phenyllactic acid) produced by Lactobacillus plantarum Strain. Food and Bioprocess Technology 3: 379–386.
  • Roy U, Batish VK, Grover S, Neelakantan S (1996) Production of Antifungal Substance by Lactococcus lactis subsp. lactis CHD-28.3. International Journal of Food Microbiology 32(1-2): 27-34.
  • Roy U, Kaushik JK, Grover S, Batish VK (2009) Partial Purification of an Antifungal Protein Produced by Enterococcus faecalis CHD 28.3. Annals of Microbiology 59: 279–284.
  • Russo P, Arena MP, Fiocco D, Capozzi V, Drider D, Spano G (2016) Lactobacillus plantarum with Broad Antifungal Activity: A Promising Approach to Increase Safety and Shelf-life of Cereal-based Products. International Journal of Food Microbiology 247: 48-54.
  • Ryan LA, Zannini E, Dal Bello F, Pawlowska A, Koehler P, Arendt EK (2011) Lactobacillus amylovorus DSM 19280 as a Novel Food-grade Antifungal Agent for Bakery Products. International Journal of Food Microbiology, 146, 276-283.
  • Ryu EH, Yang E J, Woo ER, Chang HC (2014) Purification and Characterization of Antifungal Compounds from Lactobacillus plantarum HD1 Isolated from Kimchi. Food Microbiology41: 19–26
  • Sathe SJ, Nawani NN, Dhakephalkar PK, Kapadnis BP (2007) Antifungal Lactic Acid Bacteria with Potential to Prolong Shelf-life of Fresh Vegetables. Journal of Applied Microbiology103: 2622-2628.
  • Schnürer J, Magnusson J (2005) Antifungal Lactic Acid Bacteria as Biopreservatives. Trends in Food Science and Technology 16(1):70-78.
  • Schutz H, Radler F (1984) Anaerobic Reduction of Glycerol to Propanediol-1, 3 by L. brevis and L. buchneri. Systematic and Applied Microbiology 5: 69–178.
  • Schwenninger SM, Meile, L(2004) A Mixed Culture of Propionibacterium jensenii and Lactobacillus paracasei subsp. paracasei Inhibits Food Spoilage Yeasts. Systematic and Applied Microbiology 27: 229-237.
  • Schwenninger SM, Lacroix C,Truttmann S, Jans C, Sporndli C, Bigler L, Meile L (2008) Characterization of Low-molecular-weight Antiyeast Metabolites Produced by a Food-protective Lactobacillus-Propionibacterium Coculture. Journal of Food Protection 71: 2481–2487.
  • Sjogren J, Magnusson J, Broberg A, Schnurer J (2003) Antifungal 3-hydroxyl fatty acids from Lactobacillus plantarum MiLAB14. Applied and Environmental Microbiology 69: 7554–7557.
  • Smaoui S, Elleuch L, Bejar W, Karray-Rebain I, Ayadin I, Jaouadi B,  Mellouli L (2010) Inhibition of Fungi and Gram-negative Bacteria by Bacteriocin BacTN635 Produced by Lactobacillus plantarum sp. TN635. Applied Biochemistry and Biotechnology 162:4, 1132-1146.
  • Strom K, Sjogren J, Broberg A, Schnurer, J (2002) Lactobacillus plantarum MiLAB 393 Produces the Antifungal Cyclic Dipeptides Cyclo(L-Phe-L-Pro) and Cyclo (L-Pro-trans-4-OH-L-Pro) and 3-phenyllactic acid. Applied and Environmental Microbiology 68:4322–4327.
  • Valerio F, Lavermicocca P, Pascale M, Visconti A (2004) Production of Phenyllactic Acid by Lactic Acid Bacteria: An Approach to the Selection of Strains Contributing to Food Quality and Preservation. FEMS Microbiology Letters 233: 289–295.
  • Wang H, Sun Y, Chen C, Sun Z, Zhou Y, Shen F (2013) Genome Shuffling of Lactobacillus plantarum for Improving Antifungal Activity. Food Control 32: 341-347.
  • Wang H, Yan Y, Wang J, Zhang H, Qi W (2012)  Production and Characterization of Antifungal Compounds Produced by Lactobacillus plantarum IMAU10014. PloS one 7(1): e29452.
  • Wood BJ, Holzapfel WHN (1995) The Genera of Lactic Acid Bacteria (Vol. 2). , Blackie Academic and Professional, Glasgow.
  • Yan PS, Song Y, Sakuno E, Nakajima H, Nakagawa H, Yabe K (2004) Cyclo (L-Leucyl-L-Prolyl) Produced by Achromobacter xylosoxidans Inhibits Aflatoxin Production by Aspergillus parasiticus. Applied and Environmental Microbiology 70: 7466–7473.
  • Zhang C, Brandtb MJ, Schwaba C, Ganzlea MJ (2010) Propionic Acid Production by Cofermentation of Lactobacillus buchneri and Lactobacillus diolivorans in Sourdough. FoodMicrobiology 27: 390-395.
  • Zhao D (2011) Isolation of Antifungal Lactic Acid Bacteria from Food Sources and Their Use to Inhibit Mould Growth in Cheese. Doktora tezi, Kaliforniya Politeknik Devlet Üniversitesi, San Luis Obispo.
  • Zheng Z, Ma C, Gao C, Li F, Qin J, Zhang H, Wang K, Xu, P (2011). Efficient Conversion of Phenylpyruvic Acid to Phenyllactic Acid by Using Whole Cells of Bacillus coagulans SDM. PloS one  6(4): e19030.

Antifungal Aktivite Üreten Laktik Asit Bakterileri

Year 2017, Volume: 14 Issue: 1, 79 - 85, 04.07.2017
https://doi.org/10.25308/aduziraat.295740

Abstract

Küf ve mayalar tüm gıdalarda gelişebilme özelliğine sahip oldukça dirençli mikroorganizmalardır. Küf ve mayaların neden olduğu gıda bozulmaları ve kontrolü insan sağlığı ve gıda güvenliği için önemli bir konudur. Küfler ayrıca, sağlığa zarar veren çeşitli mikotoksinler üretebilirler. Zararlı mikroorganizmaları önlemek için, biyokoruyucu ajanlarının uygulanması ısısal işlem, kurutma ve kimyasal katkıların kullanılması gibi diğer uygulamalar için yeni, alternatif veya tamamlayıcı olarak düşünülebilir. Biyokoruma başka bir deyişle mikroorganizmaların kendisinin ya da metabolitlerinin bozulmaya engel olmada ve raf ömrünü uzatmada kullanımı bu bakımdan önem kazanmıştır. Çeşitli fermente gıdaların geleneksel olarak üretiminde rol oynayan Laktik asit bakterileri (LAB) ve çeşitli metabolitlerinin bazı küf ve mayaları engellediği bilinmekte ve biyokoruyucu olarak kullanılabilmektedir. Son zamanlarda, LAB’nden siklik dipeptitler, proteinli maddeler ve yağ asitleri gibi çok sayıda antifungal metabolit izole edilmiştir. Bu derlemede, antifungal LAB ile ilgili güncel bilgiler bir araya getirilmiştir.


References

  • Adams MR, Hall CJ (1988) Growth İnhibition of Food–borne Pathogens by Lactic Acid and Acetic Acids and Their Mixtures. International Journal of Food Science and Technology 23: 287–292.
  • Axelsson L (2004) Lactic acid bacteria:Classification and Physiology.In .Salminen A, Von Wright A. Ouwehand (Eds.),Lactic acid bacteria.Microbiology and functional aspects, NT:Marcel Dekker, Newyork, 1-66.
  • Batish VK, Roy U, Lal R,  Grover S (1997) Antifungal Attributes of Lactic Acid Bacteria – A Review. Critical Reviews in Biotechnology 17: 209–225.
  • Cabo ML, Braber AF, Koenraad PMFJ (2002) Apparent Antifungal Activity of Several Lactic Acid Bacteria against Penicillium Discolor due to Acetic Acid in The Medium. Journal of Food Protection 65: 1309–1316.
  • Chung TC, Axelsson L, Lindgren SE,  Dobrogosz WJ (1989) In Vitro Studies on Reuterin Synthesis by Lactobacillus reuteri. Microbial Ecology in Health and Disease 2: 137–144.
  • Cizeikiene D, Juodeikiene G, Paskevicius A, Bartkiene E (2013) Antimicrobial Activity of Lactic Acid Bacteria against Pathogenic and Spoilage Microorganism Isolated from Food and Their Control in Wheat Bread. Food Control 31: 539-545.
  • Claisse O, Lonvaud-Funel A (2000) Assimilation of Glycerol by a Strain of Lactobacillus collinoides Isolated from Cider.  Food Microbiology 17: 513–519.
  • Corsetti A, Gobbetti M, Rossi J, Damiani P (1998) Antimould Activity of Sourdough Lactic Acid Bacteria: Identification of a Mixture of Organic Acids Produced by Lactobacillus sanfrancisco CB1. Applied Microbiology and Biotechnology 50:253–256.
  • Crowley S, Mahony J, van Sinderen D (2013) Current Perspectives on Antifungal Lactic Acid Bacteria as Natural Bio-preservatives. Trends in Food Science and Technology 33(2): 93-109.
  • Dal Bello F, Clarke CI, Ryan LAM, Ulmer H, Schober TJ, Strom K, Arendt EK (2007) Improvement of the Quality and Shelf Life of Wheat Bread by Fermentation with the Antifungal Strain Lactobacillus plantarum FST 1.7. Journal of Cereal Science 45:309–318.
  • Delavenne E, Ismail R, Pawtowski A, Mounier J,  Barbier, B (2012) Assessment of Lactobacilli Strains as Yoghurt Bioprotective Cultures. Food Control 30: 206-213.
  • Gajbhiye MH, Kapadnis BP (2016) Antifungal-activity-Producing Lactic Acid Bacteria as Biocontrol Agents in Plants. Biocontrol Science and Technology 26(11):1451-1470.
  • Garcha S, Natt NK (2011) In Situ Control of Food Spoilage Fungus Using Lactobacillus acidophilus NCDC 291. Journal of Food Science and Technology 49: 643-648.
  • Gerez CL, Torino, MI, Rollán G, De Valdez GF (2009) Prevention of Bread Mould Spoilage by Using Lactic Acid Bacteria with Antifungal Properties Food control 20(2): 144-148.
  • Gerez CL, Carbajo MS, Rollan G, Torres GL,  Font de Valdez G (2010) Inhibition of Citrus Fungal Pathogens by Using Lactic Acid Bacteria. Journal of Food Science:75, 354–359.
  • Gould GW (1996) Methods for Preservation and Extension of Shelf Life. International Journal of Food Microbiology 33: 51–64.
  • Gourama H, Bullerman LB (1997) Anti-aflatoxigenic Activity of Lactobacillus casei ssp. pseudoplantarum. International Journal of Food Microbiology 34: 131–143.
  • Kamata M, Toyomasu R, Suzuki D, Tanaka T (1986) D-phenyllactic acid Production by Brevibacterium or Corynebacterium. Patent JP 86108396.
  • Kandler O (1983) Carbohydrate Metabolism in Lactic Acid Bacteria. Antoine van Leuwenhoek 49: 202–224.
  • Kwak MK, Liu R, Kim MK, Moon D, Kim AH, Song SH, Kangn AO (2014) Cyclic Dipeptides from Lactic Acid Bacteria Inhibit the Proliferation of Pathogenic Fungi. Journal of Microbiology 52:64–70.
  • Laitila  A, Alakomi H L, Raaska L, Mattila Sandholm T, Haikara A (2002) Antifungal Activities of Two Lactobacillus plantarum Strains against Fusarium Moulds in Vitro and in Malting of Barley. Journal of Applied Microbiology 93(4): 566-576.
  • Lan W, Chen Y, Wu H, Yanagida F (2012) Bio-protective Potential of Lactic Acid Bacteria Isolated from Fermented Wax Gourd. Folia Microbiologica 57: 90–105
  • Lavermicocca P, Valerio F, Evidente A, Lazzaroni S, Corsetti A, Gobbetti M (2000) Purification and Characterization of Novel Antifungal Compounds from the Sourdough Lactobacillus plantarum Strain 21B. Applied and Environmental Microbiology 66: 4084–4090.
  • Lind H, Sjogren J, Gohil S, Kenne L, Schnurer J, Broberg A (2007) Antifungal compounds from cultures of dairy propionibacteria type strains. FEMS Microbiology Letters 271: 310–315.
  • Magnusson J, Schnürer J (2001) Lactobacillus coryniformis subsp. coryniformis Strain Si3 Produces a Broad-spectrum Proteinaceous Antifungal Compound. Applied and Environmental Microbiology 67(1): 1-5.
  • Mandal V, Sen SK, Mandal  N C (2007) Detection, Isolation and Partial Characterization of Antifungal Compound (s) Produced by Pediococcus acidilactici LAB 5. Natural Product Communications 2(6):671-674.
  • Muhialdini BJ, Hassan Z, Sadon, S K, Zulkifli NA, Azfari AA (2011) Effect of pH and Heat Treatment on Antifungal Activity of Lactobacillus fermentum Te007, Lactobacillus pentosus G004 and Pediococcus pentosaceus Te010. Innovative Romanian Food Biotechnology 8: 41-53.
  • Munoz R, Arena ME, Silva J, Gonzalez SN (2010) Inhibition of Mycotoxin –producing Aspergillus nomius VSC 23 by Lactic Acid Bacteria and Saccharomyces cerevisiae. Brazilian Journal of Microbiology 41: 1019–1026.
  • Nakanishi K, Tokuda H, Ando T, Yajima M, Nakajima T, Tanaka O, Ohmomo S (2002) Screening of Lactic Acid Bacteria Having the Ability to Produce Reuterin. Japanese Journal of Lactic Acid Bacteria 13: 37–45.
  • Ndagano D, Lamoureux T, Dortu C, Vandermoten S, Thonart P (2011) Antifungal Activity of 2 Lactic Acid Bacteria of the Weissella Genus Isolated from Food. Journal of Food Science 76: M305–M311.
  • Niku-Paavola ML, Laitila A, Mattila-Sandholm T, Haikara A (1999) New Types of Antimicrobials Produced by Lactobacillus plantarum. Journal of Applied Microbiology 86:29–35.
  • Okkers DJ, Dicks LM, Silvester M, Joubert JJ, Odendaal, HJ (1999) Characterization of Pentocin TV35b, a Bacteriocin-like Peptide Isolated from Lactobacillus pentosus with a Fungistatic Effect on Candida albicans. Journal of Applied Microbiology 87: 726–734.
  • Orla-Jensen S (1942) The lactic acid bacteria (Vol. 2, No. 3). Ejnar Munksgaard.
  • Piper P, Calderon OC, Hatzixanthis K, Mollapour M (2001) Weak Acid Adaptation: The Stress Response that confers Yeasts with Resistance to Organic Acid Food Preservatives. Microbiology 147:2635–2642.
  • Prema P, Smila D, Palavesam A, Immanuel G (2010) Production and Characterization of an Antifungal Compound (3-Phenyllactic acid) produced by Lactobacillus plantarum Strain. Food and Bioprocess Technology 3: 379–386.
  • Roy U, Batish VK, Grover S, Neelakantan S (1996) Production of Antifungal Substance by Lactococcus lactis subsp. lactis CHD-28.3. International Journal of Food Microbiology 32(1-2): 27-34.
  • Roy U, Kaushik JK, Grover S, Batish VK (2009) Partial Purification of an Antifungal Protein Produced by Enterococcus faecalis CHD 28.3. Annals of Microbiology 59: 279–284.
  • Russo P, Arena MP, Fiocco D, Capozzi V, Drider D, Spano G (2016) Lactobacillus plantarum with Broad Antifungal Activity: A Promising Approach to Increase Safety and Shelf-life of Cereal-based Products. International Journal of Food Microbiology 247: 48-54.
  • Ryan LA, Zannini E, Dal Bello F, Pawlowska A, Koehler P, Arendt EK (2011) Lactobacillus amylovorus DSM 19280 as a Novel Food-grade Antifungal Agent for Bakery Products. International Journal of Food Microbiology, 146, 276-283.
  • Ryu EH, Yang E J, Woo ER, Chang HC (2014) Purification and Characterization of Antifungal Compounds from Lactobacillus plantarum HD1 Isolated from Kimchi. Food Microbiology41: 19–26
  • Sathe SJ, Nawani NN, Dhakephalkar PK, Kapadnis BP (2007) Antifungal Lactic Acid Bacteria with Potential to Prolong Shelf-life of Fresh Vegetables. Journal of Applied Microbiology103: 2622-2628.
  • Schnürer J, Magnusson J (2005) Antifungal Lactic Acid Bacteria as Biopreservatives. Trends in Food Science and Technology 16(1):70-78.
  • Schutz H, Radler F (1984) Anaerobic Reduction of Glycerol to Propanediol-1, 3 by L. brevis and L. buchneri. Systematic and Applied Microbiology 5: 69–178.
  • Schwenninger SM, Meile, L(2004) A Mixed Culture of Propionibacterium jensenii and Lactobacillus paracasei subsp. paracasei Inhibits Food Spoilage Yeasts. Systematic and Applied Microbiology 27: 229-237.
  • Schwenninger SM, Lacroix C,Truttmann S, Jans C, Sporndli C, Bigler L, Meile L (2008) Characterization of Low-molecular-weight Antiyeast Metabolites Produced by a Food-protective Lactobacillus-Propionibacterium Coculture. Journal of Food Protection 71: 2481–2487.
  • Sjogren J, Magnusson J, Broberg A, Schnurer J (2003) Antifungal 3-hydroxyl fatty acids from Lactobacillus plantarum MiLAB14. Applied and Environmental Microbiology 69: 7554–7557.
  • Smaoui S, Elleuch L, Bejar W, Karray-Rebain I, Ayadin I, Jaouadi B,  Mellouli L (2010) Inhibition of Fungi and Gram-negative Bacteria by Bacteriocin BacTN635 Produced by Lactobacillus plantarum sp. TN635. Applied Biochemistry and Biotechnology 162:4, 1132-1146.
  • Strom K, Sjogren J, Broberg A, Schnurer, J (2002) Lactobacillus plantarum MiLAB 393 Produces the Antifungal Cyclic Dipeptides Cyclo(L-Phe-L-Pro) and Cyclo (L-Pro-trans-4-OH-L-Pro) and 3-phenyllactic acid. Applied and Environmental Microbiology 68:4322–4327.
  • Valerio F, Lavermicocca P, Pascale M, Visconti A (2004) Production of Phenyllactic Acid by Lactic Acid Bacteria: An Approach to the Selection of Strains Contributing to Food Quality and Preservation. FEMS Microbiology Letters 233: 289–295.
  • Wang H, Sun Y, Chen C, Sun Z, Zhou Y, Shen F (2013) Genome Shuffling of Lactobacillus plantarum for Improving Antifungal Activity. Food Control 32: 341-347.
  • Wang H, Yan Y, Wang J, Zhang H, Qi W (2012)  Production and Characterization of Antifungal Compounds Produced by Lactobacillus plantarum IMAU10014. PloS one 7(1): e29452.
  • Wood BJ, Holzapfel WHN (1995) The Genera of Lactic Acid Bacteria (Vol. 2). , Blackie Academic and Professional, Glasgow.
  • Yan PS, Song Y, Sakuno E, Nakajima H, Nakagawa H, Yabe K (2004) Cyclo (L-Leucyl-L-Prolyl) Produced by Achromobacter xylosoxidans Inhibits Aflatoxin Production by Aspergillus parasiticus. Applied and Environmental Microbiology 70: 7466–7473.
  • Zhang C, Brandtb MJ, Schwaba C, Ganzlea MJ (2010) Propionic Acid Production by Cofermentation of Lactobacillus buchneri and Lactobacillus diolivorans in Sourdough. FoodMicrobiology 27: 390-395.
  • Zhao D (2011) Isolation of Antifungal Lactic Acid Bacteria from Food Sources and Their Use to Inhibit Mould Growth in Cheese. Doktora tezi, Kaliforniya Politeknik Devlet Üniversitesi, San Luis Obispo.
  • Zheng Z, Ma C, Gao C, Li F, Qin J, Zhang H, Wang K, Xu, P (2011). Efficient Conversion of Phenylpyruvic Acid to Phenyllactic Acid by Using Whole Cells of Bacillus coagulans SDM. PloS one  6(4): e19030.
There are 56 citations in total.

Details

Subjects Food Engineering
Journal Section Erratum
Authors

Çisem Bulut Albayrak

Publication Date July 4, 2017
Published in Issue Year 2017 Volume: 14 Issue: 1

Cite

APA Bulut Albayrak, Ç. (2017). Antifungal Aktivite Üreten Laktik Asit Bakterileri. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 14(1), 79-85. https://doi.org/10.25308/aduziraat.295740
AMA Bulut Albayrak Ç. Antifungal Aktivite Üreten Laktik Asit Bakterileri. ADÜ ZİRAAT DERG. July 2017;14(1):79-85. doi:10.25308/aduziraat.295740
Chicago Bulut Albayrak, Çisem. “Antifungal Aktivite Üreten Laktik Asit Bakterileri”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 14, no. 1 (July 2017): 79-85. https://doi.org/10.25308/aduziraat.295740.
EndNote Bulut Albayrak Ç (July 1, 2017) Antifungal Aktivite Üreten Laktik Asit Bakterileri. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 14 1 79–85.
IEEE Ç. Bulut Albayrak, “Antifungal Aktivite Üreten Laktik Asit Bakterileri”, ADÜ ZİRAAT DERG, vol. 14, no. 1, pp. 79–85, 2017, doi: 10.25308/aduziraat.295740.
ISNAD Bulut Albayrak, Çisem. “Antifungal Aktivite Üreten Laktik Asit Bakterileri”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 14/1 (July 2017), 79-85. https://doi.org/10.25308/aduziraat.295740.
JAMA Bulut Albayrak Ç. Antifungal Aktivite Üreten Laktik Asit Bakterileri. ADÜ ZİRAAT DERG. 2017;14:79–85.
MLA Bulut Albayrak, Çisem. “Antifungal Aktivite Üreten Laktik Asit Bakterileri”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, vol. 14, no. 1, 2017, pp. 79-85, doi:10.25308/aduziraat.295740.
Vancouver Bulut Albayrak Ç. Antifungal Aktivite Üreten Laktik Asit Bakterileri. ADÜ ZİRAAT DERG. 2017;14(1):79-85.