Research Article
BibTex RIS Cite

Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton

Year 2020, , 295 - 306, 25.06.2020
https://doi.org/10.37094/adyujsci.705319

Abstract

    In this paper, we study the Riemannian submersions $\pi:M\rightarrow B$ whose total manifolds admit an almost Yamabe soliton. Here, we give some necessary conditions for which any fiber of $\pi$ or $B$ are almost Yamabe soliton or Yamabe soliton. Also, we calculate the scalar curvatures of any fiber or $B$ and using them, we present the relations between the scalar curvatures of them and obtain some characterizations of such a soliton (that is, shrinking, steady or expanding).

Supporting Institution

TÜBİTAK

Project Number

117F434

Thanks

This work is supported by 1001-Scientific and Technological Research Projects Funding Program of TUBITAK project number 117F434.

References

  • [1] Hamilton, R., “The Ricci flow on surfaces”, in Mathematics and General Relativity, Contemporary Mathematics, (71), 237-361, 1988.
  • [2] Barbosa, E., Ribeiro, E., On conformal solutions of the Yamabe flow, Archiv der Mathematik, (101), 79-89, 2013.
  • [3] Cao, H.D., Sun, X., Zhang, Y., On the structure of gradient Yamabe solitons, Mathematical Research Letters, (19), 767-774, 2012.
  • [4] Chen, B.-Y., Deshmukh, S., Yamabe and quasi-Yamabe solitons on Euclidean submanifolds, Mediterranean Journal of Mathematics, (15), 194, 2018.
  • [5] Deshmukh, S., Chen, B.-Y., A Note on Yamabe solitons, Balkan Journal of Geometry and Its Applications, 23(1), 37-43, 2018.
  • [6] Ma, L., Miquel, V., Remarks on scalar curvature of Yamabe solitons, Annals of Global Analysis and Geometry, 42, 195-205, 2012.
  • [7] Neto, B.L., A note on (anti-)self dual quasi Yamabe gradient solitons, Results in Mathematics, 71, 527-533, 2017.
  • [8] Seko, T., Matea, S., Classification of almost Yamabe solitons in Euclidean spaces, Journal of Geometry and Physics, 136, 97-103, 2019.
  • [9] Falcitelli, M., Ianus, S., Pastore, A.M., Riemannian submersions and related topics, World Scientific Publishing Co. Pte. Ltd. 2004.
  • [10] Gray, A., Pseudo-Riemannian almost product manifolds and submersion, Journal of Mathematics and Mechanics, (16), 715–737, 1967.
  • [11] O'Neill, B., The fundamental equations of a Riemannian submersions, Michigan Mathematical Journal, 13, 459-469, 1966.
  • [12] Akyol, M.A., Gündüzalp, Y., Hemi-slant submersions from almost product Riemannian manifolds, Gulf Journal of Mathematics, 4(3), 15-27, 2016.
  • [13] Akyol, M.A., Gündüzalp, Y., Semi-invariant semi-Riemannian submersions, Communications Faculty of Sciences University of Ankara Series A1-Mathematics and Statistics, 67(1), 80-92, 2018.
  • [14] Eken Meriç, Ş., Kılıç, E., Riemannian submersions whose total manifolds admitting a Ricci soliton, International Journal of Geometric Methods in Modern Physics, 16(12), 1950196 (12 pages), 2019.
  • [15] Özdemir, F., Sayar, C., Taştan, H.M., Semi-invariant submersions whose total manifolds are locally product Riemannian, Quaestiones Mathematicae, 40(7), 909-926, 2017.
  • [16] Besse, A.L., Einstein manifolds, Springer-Verlag, Berlin, Heildelberg, New York, 1987.
Year 2020, , 295 - 306, 25.06.2020
https://doi.org/10.37094/adyujsci.705319

Abstract

Project Number

117F434

References

  • [1] Hamilton, R., “The Ricci flow on surfaces”, in Mathematics and General Relativity, Contemporary Mathematics, (71), 237-361, 1988.
  • [2] Barbosa, E., Ribeiro, E., On conformal solutions of the Yamabe flow, Archiv der Mathematik, (101), 79-89, 2013.
  • [3] Cao, H.D., Sun, X., Zhang, Y., On the structure of gradient Yamabe solitons, Mathematical Research Letters, (19), 767-774, 2012.
  • [4] Chen, B.-Y., Deshmukh, S., Yamabe and quasi-Yamabe solitons on Euclidean submanifolds, Mediterranean Journal of Mathematics, (15), 194, 2018.
  • [5] Deshmukh, S., Chen, B.-Y., A Note on Yamabe solitons, Balkan Journal of Geometry and Its Applications, 23(1), 37-43, 2018.
  • [6] Ma, L., Miquel, V., Remarks on scalar curvature of Yamabe solitons, Annals of Global Analysis and Geometry, 42, 195-205, 2012.
  • [7] Neto, B.L., A note on (anti-)self dual quasi Yamabe gradient solitons, Results in Mathematics, 71, 527-533, 2017.
  • [8] Seko, T., Matea, S., Classification of almost Yamabe solitons in Euclidean spaces, Journal of Geometry and Physics, 136, 97-103, 2019.
  • [9] Falcitelli, M., Ianus, S., Pastore, A.M., Riemannian submersions and related topics, World Scientific Publishing Co. Pte. Ltd. 2004.
  • [10] Gray, A., Pseudo-Riemannian almost product manifolds and submersion, Journal of Mathematics and Mechanics, (16), 715–737, 1967.
  • [11] O'Neill, B., The fundamental equations of a Riemannian submersions, Michigan Mathematical Journal, 13, 459-469, 1966.
  • [12] Akyol, M.A., Gündüzalp, Y., Hemi-slant submersions from almost product Riemannian manifolds, Gulf Journal of Mathematics, 4(3), 15-27, 2016.
  • [13] Akyol, M.A., Gündüzalp, Y., Semi-invariant semi-Riemannian submersions, Communications Faculty of Sciences University of Ankara Series A1-Mathematics and Statistics, 67(1), 80-92, 2018.
  • [14] Eken Meriç, Ş., Kılıç, E., Riemannian submersions whose total manifolds admitting a Ricci soliton, International Journal of Geometric Methods in Modern Physics, 16(12), 1950196 (12 pages), 2019.
  • [15] Özdemir, F., Sayar, C., Taştan, H.M., Semi-invariant submersions whose total manifolds are locally product Riemannian, Quaestiones Mathematicae, 40(7), 909-926, 2017.
  • [16] Besse, A.L., Einstein manifolds, Springer-Verlag, Berlin, Heildelberg, New York, 1987.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Physics
Journal Section Mathematics
Authors

Şemsi Eken Meriç 0000-0003-2783-1149

Project Number 117F434
Publication Date June 25, 2020
Submission Date March 17, 2020
Acceptance Date May 21, 2020
Published in Issue Year 2020

Cite

APA Meriç, Ş. E. (2020). Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton. Adıyaman University Journal of Science, 10(1), 295-306. https://doi.org/10.37094/adyujsci.705319
AMA Meriç ŞE. Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton. ADYU J SCI. June 2020;10(1):295-306. doi:10.37094/adyujsci.705319
Chicago Meriç, Şemsi Eken. “Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton”. Adıyaman University Journal of Science 10, no. 1 (June 2020): 295-306. https://doi.org/10.37094/adyujsci.705319.
EndNote Meriç ŞE (June 1, 2020) Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton. Adıyaman University Journal of Science 10 1 295–306.
IEEE Ş. E. Meriç, “Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton”, ADYU J SCI, vol. 10, no. 1, pp. 295–306, 2020, doi: 10.37094/adyujsci.705319.
ISNAD Meriç, Şemsi Eken. “Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton”. Adıyaman University Journal of Science 10/1 (June 2020), 295-306. https://doi.org/10.37094/adyujsci.705319.
JAMA Meriç ŞE. Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton. ADYU J SCI. 2020;10:295–306.
MLA Meriç, Şemsi Eken. “Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton”. Adıyaman University Journal of Science, vol. 10, no. 1, 2020, pp. 295-06, doi:10.37094/adyujsci.705319.
Vancouver Meriç ŞE. Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton. ADYU J SCI. 2020;10(1):295-306.

...