Research Article
BibTex RIS Cite

Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton

Year 2020, Volume: 10 Issue: 1, 295 - 306, 25.06.2020
https://doi.org/10.37094/adyujsci.705319

Abstract

    In this paper, we study the Riemannian submersions $\pi:M\rightarrow B$ whose total manifolds admit an almost Yamabe soliton. Here, we give some necessary conditions for which any fiber of $\pi$ or $B$ are almost Yamabe soliton or Yamabe soliton. Also, we calculate the scalar curvatures of any fiber or $B$ and using them, we present the relations between the scalar curvatures of them and obtain some characterizations of such a soliton (that is, shrinking, steady or expanding).

Supporting Institution

TÜBİTAK

Project Number

117F434

Thanks

This work is supported by 1001-Scientific and Technological Research Projects Funding Program of TUBITAK project number 117F434.

References

  • [1] Hamilton, R., “The Ricci flow on surfaces”, in Mathematics and General Relativity, Contemporary Mathematics, (71), 237-361, 1988.
  • [2] Barbosa, E., Ribeiro, E., On conformal solutions of the Yamabe flow, Archiv der Mathematik, (101), 79-89, 2013.
  • [3] Cao, H.D., Sun, X., Zhang, Y., On the structure of gradient Yamabe solitons, Mathematical Research Letters, (19), 767-774, 2012.
  • [4] Chen, B.-Y., Deshmukh, S., Yamabe and quasi-Yamabe solitons on Euclidean submanifolds, Mediterranean Journal of Mathematics, (15), 194, 2018.
  • [5] Deshmukh, S., Chen, B.-Y., A Note on Yamabe solitons, Balkan Journal of Geometry and Its Applications, 23(1), 37-43, 2018.
  • [6] Ma, L., Miquel, V., Remarks on scalar curvature of Yamabe solitons, Annals of Global Analysis and Geometry, 42, 195-205, 2012.
  • [7] Neto, B.L., A note on (anti-)self dual quasi Yamabe gradient solitons, Results in Mathematics, 71, 527-533, 2017.
  • [8] Seko, T., Matea, S., Classification of almost Yamabe solitons in Euclidean spaces, Journal of Geometry and Physics, 136, 97-103, 2019.
  • [9] Falcitelli, M., Ianus, S., Pastore, A.M., Riemannian submersions and related topics, World Scientific Publishing Co. Pte. Ltd. 2004.
  • [10] Gray, A., Pseudo-Riemannian almost product manifolds and submersion, Journal of Mathematics and Mechanics, (16), 715–737, 1967.
  • [11] O'Neill, B., The fundamental equations of a Riemannian submersions, Michigan Mathematical Journal, 13, 459-469, 1966.
  • [12] Akyol, M.A., Gündüzalp, Y., Hemi-slant submersions from almost product Riemannian manifolds, Gulf Journal of Mathematics, 4(3), 15-27, 2016.
  • [13] Akyol, M.A., Gündüzalp, Y., Semi-invariant semi-Riemannian submersions, Communications Faculty of Sciences University of Ankara Series A1-Mathematics and Statistics, 67(1), 80-92, 2018.
  • [14] Eken Meriç, Ş., Kılıç, E., Riemannian submersions whose total manifolds admitting a Ricci soliton, International Journal of Geometric Methods in Modern Physics, 16(12), 1950196 (12 pages), 2019.
  • [15] Özdemir, F., Sayar, C., Taştan, H.M., Semi-invariant submersions whose total manifolds are locally product Riemannian, Quaestiones Mathematicae, 40(7), 909-926, 2017.
  • [16] Besse, A.L., Einstein manifolds, Springer-Verlag, Berlin, Heildelberg, New York, 1987.
Year 2020, Volume: 10 Issue: 1, 295 - 306, 25.06.2020
https://doi.org/10.37094/adyujsci.705319

Abstract

Project Number

117F434

References

  • [1] Hamilton, R., “The Ricci flow on surfaces”, in Mathematics and General Relativity, Contemporary Mathematics, (71), 237-361, 1988.
  • [2] Barbosa, E., Ribeiro, E., On conformal solutions of the Yamabe flow, Archiv der Mathematik, (101), 79-89, 2013.
  • [3] Cao, H.D., Sun, X., Zhang, Y., On the structure of gradient Yamabe solitons, Mathematical Research Letters, (19), 767-774, 2012.
  • [4] Chen, B.-Y., Deshmukh, S., Yamabe and quasi-Yamabe solitons on Euclidean submanifolds, Mediterranean Journal of Mathematics, (15), 194, 2018.
  • [5] Deshmukh, S., Chen, B.-Y., A Note on Yamabe solitons, Balkan Journal of Geometry and Its Applications, 23(1), 37-43, 2018.
  • [6] Ma, L., Miquel, V., Remarks on scalar curvature of Yamabe solitons, Annals of Global Analysis and Geometry, 42, 195-205, 2012.
  • [7] Neto, B.L., A note on (anti-)self dual quasi Yamabe gradient solitons, Results in Mathematics, 71, 527-533, 2017.
  • [8] Seko, T., Matea, S., Classification of almost Yamabe solitons in Euclidean spaces, Journal of Geometry and Physics, 136, 97-103, 2019.
  • [9] Falcitelli, M., Ianus, S., Pastore, A.M., Riemannian submersions and related topics, World Scientific Publishing Co. Pte. Ltd. 2004.
  • [10] Gray, A., Pseudo-Riemannian almost product manifolds and submersion, Journal of Mathematics and Mechanics, (16), 715–737, 1967.
  • [11] O'Neill, B., The fundamental equations of a Riemannian submersions, Michigan Mathematical Journal, 13, 459-469, 1966.
  • [12] Akyol, M.A., Gündüzalp, Y., Hemi-slant submersions from almost product Riemannian manifolds, Gulf Journal of Mathematics, 4(3), 15-27, 2016.
  • [13] Akyol, M.A., Gündüzalp, Y., Semi-invariant semi-Riemannian submersions, Communications Faculty of Sciences University of Ankara Series A1-Mathematics and Statistics, 67(1), 80-92, 2018.
  • [14] Eken Meriç, Ş., Kılıç, E., Riemannian submersions whose total manifolds admitting a Ricci soliton, International Journal of Geometric Methods in Modern Physics, 16(12), 1950196 (12 pages), 2019.
  • [15] Özdemir, F., Sayar, C., Taştan, H.M., Semi-invariant submersions whose total manifolds are locally product Riemannian, Quaestiones Mathematicae, 40(7), 909-926, 2017.
  • [16] Besse, A.L., Einstein manifolds, Springer-Verlag, Berlin, Heildelberg, New York, 1987.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Physics
Journal Section Mathematics
Authors

Şemsi Eken Meriç 0000-0003-2783-1149

Project Number 117F434
Publication Date June 25, 2020
Submission Date March 17, 2020
Acceptance Date May 21, 2020
Published in Issue Year 2020 Volume: 10 Issue: 1

Cite

APA Meriç, Ş. E. (2020). Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton. Adıyaman University Journal of Science, 10(1), 295-306. https://doi.org/10.37094/adyujsci.705319
AMA Meriç ŞE. Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton. ADYU J SCI. June 2020;10(1):295-306. doi:10.37094/adyujsci.705319
Chicago Meriç, Şemsi Eken. “Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton”. Adıyaman University Journal of Science 10, no. 1 (June 2020): 295-306. https://doi.org/10.37094/adyujsci.705319.
EndNote Meriç ŞE (June 1, 2020) Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton. Adıyaman University Journal of Science 10 1 295–306.
IEEE Ş. E. Meriç, “Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton”, ADYU J SCI, vol. 10, no. 1, pp. 295–306, 2020, doi: 10.37094/adyujsci.705319.
ISNAD Meriç, Şemsi Eken. “Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton”. Adıyaman University Journal of Science 10/1 (June 2020), 295-306. https://doi.org/10.37094/adyujsci.705319.
JAMA Meriç ŞE. Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton. ADYU J SCI. 2020;10:295–306.
MLA Meriç, Şemsi Eken. “Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton”. Adıyaman University Journal of Science, vol. 10, no. 1, 2020, pp. 295-06, doi:10.37094/adyujsci.705319.
Vancouver Meriç ŞE. Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton. ADYU J SCI. 2020;10(1):295-306.

...