Research Article
BibTex RIS Cite

Yakın Fay ve Uzak Fay Depremlerine Maruz Kalan İki Katmanlı Zemindeki Gömülü Borunun Tepkisinin Araştırılması

Year 2025, Volume: 12 Issue: 26, 211 - 224, 31.08.2025
https://doi.org/10.54365/adyumbd.1696358

Abstract

Boru hatlarının deprem sırasındaki davranışı, fay hareketleri, zemin tipleri, boru malzemesinin özellikleri ve bağlantı detayları gibi birçok faktöre bağlıdır. Diğer yandan, depremler tarafından tetiklenebilen sıvılaşma, yüzey kırığı veya dalga yayılım etkilerinin neden olduğu nispeten yüksek tepe yer hareketi ivme değerlerinden dolayı da boru hattı sistemlerinde hasarlar görülebilir. Bu bağlamda, çalışma kapsamında, geliştirilen iki boyutlu sonlu elemanlar modeli kullanılarak, zemin-yapı etkileşim olgusunun yanı sıra yakın fay ve uzak fay deprem etkilerinin boru sisteminin davranışları üzerindeki etkileri araştırılmıştır. Zemin-boru etkileşim sisteminin modal analizleri, farklı zemin koşulları için yapılmış ve etkileşim sisteminin temel mod frekansları, iyi bilinen bir yaklaşım kullanılarak elde edilen saha temel frekansları ile karşılaştırılmıştır. Ayrıca, farklı zemin sistemleri ve deprem yüklemeleri kullanılarak zaman alanında parametrik analizler gerçekleştirilmiştir. Boru sisteminin davranışlarındaki değişimler, dikkate alınan farklı zemin koşulları ve deprem yüklemeleri için karşılaştırmalı olarak incelenmiştir. Elde edilen sonuçlar, boru sisteminin tepkilerinin zemin-boru etkileşimine, yakın fay ve uzak fay deprem yüklerine bağlı olarak değişebileceğine önemli ölçüde dikkat çekmektedir.

References

  • Unal EO, Kocaman S, Gokceoglu C. Impact assessment of geohazards triggered by 6 February 2023 Kahramanmaras Earthquakes (Mw 7.7 and Mw 7.6) on the natural gas pipelines. Eng Geol 2024;334:107508. https://doi.org/10.1016/j.enggeo.2024.107508.
  • Vazouras P, Karamanos SA, Dakoulas P. Finite element analysis of buried steel pipelines under strike-slip fault displacements. Soil Dyn Earthq Eng 2010;30:1361–76. https://doi.org/10.1016/j.soildyn.2010.06.011.
  • Xu L, Cheng X, Huang R, Chen W, Hu W. Local buckling behavior of buried pipeline under seismic oblique-reverse fault displacement. Sci Rep 2022;12:1–17. https://doi.org/10.1038/s41598-022-24728-y.
  • Saiyar M, Ni P, Take WA, Moore ID. Response of pipelines of differing flexural stiffness to normal faulting. Géotechnique 2016;66:275–86. https://doi.org/10.1680/jgeot.14.P.175.
  • Wang Y, Xu T, Zhang S, Qin G. Intelligent framework for reliability evolution of natural gas pipelines subjected to earthquakes. Thin-Walled Struct 2025;214:113414. https://doi.org/10.1016/j.tws.2025.113414.
  • Pan H, Li C, Li H-N, Hu J, Ma R. Underwater shaking table test and seismic fragility assessment of free-spanning submarine pipelines under offshore spatial motions. Thin-Walled Struct 2025;213:113276. https://doi.org/10.1016/j.tws.2025.113276.
  • Darvishi R, Jafarian Y, Lashgari A. Fragility Analysis of Buried Pipelines Subjected to Seismic Landslides in Iran. J Earthq Eng 2025;00:1–19. https://doi.org/10.1080/13632469.2025.2496653.
  • Toprak S, Wham BP, Nacaroglu E, Ceylan M, Dal O. Performance of water systems during the February 6th Kahramanmaras earthquakes. Earthq Spectra 2025;41:322–53. https://doi.org/10.1177/87552930241293571.
  • Uckan E, Aksel M, Atas O, Toprak S, Kaya ES. The performance of transmission pipelines on February 6th, 2023 Kahramanmaras earthquake: a series of case studies. Bull Earthq Eng 2025;23:1203–22. https://doi.org/10.1007/s10518-024-01957-2.
  • Hindy A, Novak M. Earthquake response of underground pipelines. Earthq Eng Struct Dyn 1979;7:451–76. https://doi.org/10.1002/eqe.4290070506.
  • Datta TK, Mashaly EA. Pipeline response to random ground motion by discrete model. Earthq Eng Struct Dyn 1986;14:559–72. https://doi.org/10.1002/eqe.4290140406.
  • Takada S, Hassani N, Fukuda K. A new proposal for simplified design of buried steel pipes crossing active faults. Earthq Eng Struct Dyn 2001;30:1243–57. https://doi.org/10.1002/eqe.62.
  • Pan H, Li H-N, Li C. Seismic fragility analysis of free-spanning submarine pipelines incorporating soil spatial variability in soil-pipe interaction and offshore motion propagation. Eng Struct 2023;280:115639. https://doi.org/10.1016/j.engstruct.2023.115639.
  • Pan H, Li H-N, Li C. Seismic behaviors of free-spanning submarine pipelines subjected to multi-support earthquake motions within offshore sites. Ocean Eng 2021;237:109606. https://doi.org/10.1016/j.oceaneng.2021.109606.
  • Datta TK. Seismic analysis of structures. Chichester, UK: John Wiley & Sons, Ltd; 2010. https://doi.org/10.1002/9780470824634.
  • Anastasopoulos I, Gerolymos N, Drosos V, Kourkoulis R, Georgarakos T, Gazetas G. Nonlinear response of deep immersed tunnel to strong seismic shaking. J Geotech Geoenvironmental Eng 2007;133:1067–90. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:9(1067).
  • ANSYS Inc. ANSYS Mechanical APDL [Computer Software] 2015.
  • Sun W, Lin J, Ma Q, Yan S, Tong H, Liang Q. Seismic fragility assessment of circular metro tunnels in loess deposit. J Cent South Univ 2024;31:950–64. https://doi.org/10.1007/s11771-024-5592-9.
  • Akl SA, Metwally KG. Optimizing arching creation for Abou Muharik Tunnel in Egypt using numerical analysis. KSCE J Civ Eng 2017;21:160–7. https://doi.org/10.1007/s12205-016-0428-2.
  • Düzgün OA, Hatipoğlu YS. Effective Damping Coefficient of Fluid Viscous Dampers for Dynamic Response Mitigation of Coupled Frames. J Vib Eng Technol 2023;11:1821–35. https://doi.org/10.1007/s42417-022-00673-y.
  • Lysmer J, Kuhlemeyer RL. Finite dynamic model for infinite media. J Eng Mech Div 1969;95:859–77. https://doi.org/10.1061/JMCEA3.0001144.
  • Kramer SL, Stewart JP. Geotechnical Earthquake Engineering. vol. 1. Boca Raton: CRC Press; 2024. https://doi.org/10.1201/9781003512011.
  • Abate G, Fiamingo A, Massimino MR. An eco-sustainable innovative geotechnical technology for the structures seismic isolation, investigated by FEM parametric analyses. Bull Earthq Eng 2023;21:4851–75. https://doi.org/10.1007/s10518-023-01719-6.
  • Ozturk KF, Cakir T, Araz O. A comparative study to determine seismic response of the box culvert wing wall under influence of soil-structure interaction considering different ground motions. Soil Dyn Earthq Eng 2022;162:107452. https://doi.org/10.1016/j.soildyn.2022.107452.
  • Zangeneh A, François S, Lombaert G, Pacoste C. Modal analysis of coupled soil-structure systems. Soil Dyn Earthq Eng 2021;144:106645. https://doi.org/10.1016/j.soildyn.2021.106645.
  • Livaoğlu R, Doğangün A. Simplified seismic analysis procedures for elevated tanks considering fluid–structure–soil interaction. J Fluids Struct 2006;22:421–39. https://doi.org/10.1016/j.jfluidstructs.2005.12.004.
  • Cakir T. Evaluation of the effect of earthquake frequency content on seismic behavior of cantilever retaining wall including soil–structure interaction. Soil Dyn Earthq Eng 2013;45:96–111. https://doi.org/10.1016/j.soildyn.2012.11.008.
  • Bardet JP. Experimental soil mechanics. New Jersey: Prentice Hall; 1997.
  • Bekdaş G, Kayabekir AE, Nigdeli SM, Toklu YC. Tranfer function amplitude minimization for structures with tuned mass dampers considering soil-structure interaction. Soil Dyn Earthq Eng 2019;116:552–62. https://doi.org/10.1016/j.soildyn.2018.10.035.
  • Fema P695. Quantification of building seismic performance factors. Fema P695 2009:421.
  • Soyluk K, Karaca H. Near-fault and far-fault ground motion effects on cable-supported bridges. Procedia Eng 2017;199:3077–82. https://doi.org/10.1016/j.proeng.2017.09.421.
  • Li S, Xie L. Progress and trend on near-field problems in civil engineering. Acta Seismol Sin 2007;20:105–14. https://doi.org/10.1007/s11589-007-0105-0.
  • Sun B, Zhang S, Deng M, Wang C. Inelastic dynamic response and fragility analysis of arched hydraulic tunnels under as-recorded far-fault and near-fault ground motions. Soil Dyn Earthq Eng 2020;132:106070. https://doi.org/10.1016/j.soildyn.2020.106070.
  • Zhang C, Zhao M, Zhong Z, Du X. Seismic Intensity Measures and Fragility Analysis for Subway Stations Subjected to Near-fault Ground Motions with Velocity Pulses. J Earthq Eng 2022;26:8724–50. https://doi.org/10.1080/13632469.2021.1994056.
  • Cao V Van, Ronagh HR. Correlation between seismic parameters of far-fault motions and damage indices of low-rise reinforced concrete frames. Soil Dyn Earthq Eng 2014;66:102–12. https://doi.org/10.1016/j.soildyn.2014.06.020.
  • Mei X, Sheng Q, Cui Z. Effect of Near-Fault Pulsed Ground Motions on Seismic Response and Seismic Performance to Tunnel Structures. Shock Vib 2021;2021:1–18. https://doi.org/10.1155/2021/9999007.
  • Zhang S, Wang G. Effects of near-fault and far-fault ground motions on nonlinear dynamic response and seismic damage of concrete gravity dams. Soil Dyn Earthq Eng 2013;53:217–29. https://doi.org/10.1016/j.soildyn.2013.07.014.
  • Pacific Earthquake Engineering Research (PEER) Center. PEER ground motion database 2021. https://ngawest2.berkeley.edu/.
  • Ozturk KF. Investigation of the effects of mainshock-aftershock sequences on the dynamic responses of pipeline considering soil-pipeline interaction. Tunn Undergr Space Technol 2025;155:106231. https://doi.org/10.1016/j.tust.2024.106231.
  • Yoshida N. Seismic Ground Response Analysis. vol. 36. Dordrecht: Springer Netherlands; 2015. https://doi.org/10.1007/978-94-017-9460-2.

Investigation of Response of Embedded Pipe in Two-Layered Soil Subjected to Near-Fault and Far-Fault Earthquakes

Year 2025, Volume: 12 Issue: 26, 211 - 224, 31.08.2025
https://doi.org/10.54365/adyumbd.1696358

Abstract

The behavior of pipelines during earthquakes depends on many factors such as fault movements, soil types, pipe material properties and connection details. On the other hand, damages in pipeline systems can also be seen due to relatively high peak ground acceleration values caused by wave propagation effects, or liquefaction, surface rupture that may be triggered by earthquakes. In this context, in the scope of the study, the effects of soil-structure interaction phenomenon as well as near-fault and far-fault earthquake effects on the behaviors of the pipe system have been investigated using the developed two-dimensional finite element model. Modal analyses of soil-pipe interaction system have been made for the different soil conditions and dominant mode frequencies of interaction system have been compared with dominant site frequencies obtained using a well-known approach. In addition, parametric analyses have been performed in the time domain using different soil systems and earthquake loadings. The changes in the behaviors of the pipe system have been comparatively examined for different soil conditions and earthquake loadings considered. The obtained results importantly draw attention to the fact that the responses of the pipe system may vary depending on the soil-pipe interaction, near-fault and far-fault earthquake loadings.

References

  • Unal EO, Kocaman S, Gokceoglu C. Impact assessment of geohazards triggered by 6 February 2023 Kahramanmaras Earthquakes (Mw 7.7 and Mw 7.6) on the natural gas pipelines. Eng Geol 2024;334:107508. https://doi.org/10.1016/j.enggeo.2024.107508.
  • Vazouras P, Karamanos SA, Dakoulas P. Finite element analysis of buried steel pipelines under strike-slip fault displacements. Soil Dyn Earthq Eng 2010;30:1361–76. https://doi.org/10.1016/j.soildyn.2010.06.011.
  • Xu L, Cheng X, Huang R, Chen W, Hu W. Local buckling behavior of buried pipeline under seismic oblique-reverse fault displacement. Sci Rep 2022;12:1–17. https://doi.org/10.1038/s41598-022-24728-y.
  • Saiyar M, Ni P, Take WA, Moore ID. Response of pipelines of differing flexural stiffness to normal faulting. Géotechnique 2016;66:275–86. https://doi.org/10.1680/jgeot.14.P.175.
  • Wang Y, Xu T, Zhang S, Qin G. Intelligent framework for reliability evolution of natural gas pipelines subjected to earthquakes. Thin-Walled Struct 2025;214:113414. https://doi.org/10.1016/j.tws.2025.113414.
  • Pan H, Li C, Li H-N, Hu J, Ma R. Underwater shaking table test and seismic fragility assessment of free-spanning submarine pipelines under offshore spatial motions. Thin-Walled Struct 2025;213:113276. https://doi.org/10.1016/j.tws.2025.113276.
  • Darvishi R, Jafarian Y, Lashgari A. Fragility Analysis of Buried Pipelines Subjected to Seismic Landslides in Iran. J Earthq Eng 2025;00:1–19. https://doi.org/10.1080/13632469.2025.2496653.
  • Toprak S, Wham BP, Nacaroglu E, Ceylan M, Dal O. Performance of water systems during the February 6th Kahramanmaras earthquakes. Earthq Spectra 2025;41:322–53. https://doi.org/10.1177/87552930241293571.
  • Uckan E, Aksel M, Atas O, Toprak S, Kaya ES. The performance of transmission pipelines on February 6th, 2023 Kahramanmaras earthquake: a series of case studies. Bull Earthq Eng 2025;23:1203–22. https://doi.org/10.1007/s10518-024-01957-2.
  • Hindy A, Novak M. Earthquake response of underground pipelines. Earthq Eng Struct Dyn 1979;7:451–76. https://doi.org/10.1002/eqe.4290070506.
  • Datta TK, Mashaly EA. Pipeline response to random ground motion by discrete model. Earthq Eng Struct Dyn 1986;14:559–72. https://doi.org/10.1002/eqe.4290140406.
  • Takada S, Hassani N, Fukuda K. A new proposal for simplified design of buried steel pipes crossing active faults. Earthq Eng Struct Dyn 2001;30:1243–57. https://doi.org/10.1002/eqe.62.
  • Pan H, Li H-N, Li C. Seismic fragility analysis of free-spanning submarine pipelines incorporating soil spatial variability in soil-pipe interaction and offshore motion propagation. Eng Struct 2023;280:115639. https://doi.org/10.1016/j.engstruct.2023.115639.
  • Pan H, Li H-N, Li C. Seismic behaviors of free-spanning submarine pipelines subjected to multi-support earthquake motions within offshore sites. Ocean Eng 2021;237:109606. https://doi.org/10.1016/j.oceaneng.2021.109606.
  • Datta TK. Seismic analysis of structures. Chichester, UK: John Wiley & Sons, Ltd; 2010. https://doi.org/10.1002/9780470824634.
  • Anastasopoulos I, Gerolymos N, Drosos V, Kourkoulis R, Georgarakos T, Gazetas G. Nonlinear response of deep immersed tunnel to strong seismic shaking. J Geotech Geoenvironmental Eng 2007;133:1067–90. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:9(1067).
  • ANSYS Inc. ANSYS Mechanical APDL [Computer Software] 2015.
  • Sun W, Lin J, Ma Q, Yan S, Tong H, Liang Q. Seismic fragility assessment of circular metro tunnels in loess deposit. J Cent South Univ 2024;31:950–64. https://doi.org/10.1007/s11771-024-5592-9.
  • Akl SA, Metwally KG. Optimizing arching creation for Abou Muharik Tunnel in Egypt using numerical analysis. KSCE J Civ Eng 2017;21:160–7. https://doi.org/10.1007/s12205-016-0428-2.
  • Düzgün OA, Hatipoğlu YS. Effective Damping Coefficient of Fluid Viscous Dampers for Dynamic Response Mitigation of Coupled Frames. J Vib Eng Technol 2023;11:1821–35. https://doi.org/10.1007/s42417-022-00673-y.
  • Lysmer J, Kuhlemeyer RL. Finite dynamic model for infinite media. J Eng Mech Div 1969;95:859–77. https://doi.org/10.1061/JMCEA3.0001144.
  • Kramer SL, Stewart JP. Geotechnical Earthquake Engineering. vol. 1. Boca Raton: CRC Press; 2024. https://doi.org/10.1201/9781003512011.
  • Abate G, Fiamingo A, Massimino MR. An eco-sustainable innovative geotechnical technology for the structures seismic isolation, investigated by FEM parametric analyses. Bull Earthq Eng 2023;21:4851–75. https://doi.org/10.1007/s10518-023-01719-6.
  • Ozturk KF, Cakir T, Araz O. A comparative study to determine seismic response of the box culvert wing wall under influence of soil-structure interaction considering different ground motions. Soil Dyn Earthq Eng 2022;162:107452. https://doi.org/10.1016/j.soildyn.2022.107452.
  • Zangeneh A, François S, Lombaert G, Pacoste C. Modal analysis of coupled soil-structure systems. Soil Dyn Earthq Eng 2021;144:106645. https://doi.org/10.1016/j.soildyn.2021.106645.
  • Livaoğlu R, Doğangün A. Simplified seismic analysis procedures for elevated tanks considering fluid–structure–soil interaction. J Fluids Struct 2006;22:421–39. https://doi.org/10.1016/j.jfluidstructs.2005.12.004.
  • Cakir T. Evaluation of the effect of earthquake frequency content on seismic behavior of cantilever retaining wall including soil–structure interaction. Soil Dyn Earthq Eng 2013;45:96–111. https://doi.org/10.1016/j.soildyn.2012.11.008.
  • Bardet JP. Experimental soil mechanics. New Jersey: Prentice Hall; 1997.
  • Bekdaş G, Kayabekir AE, Nigdeli SM, Toklu YC. Tranfer function amplitude minimization for structures with tuned mass dampers considering soil-structure interaction. Soil Dyn Earthq Eng 2019;116:552–62. https://doi.org/10.1016/j.soildyn.2018.10.035.
  • Fema P695. Quantification of building seismic performance factors. Fema P695 2009:421.
  • Soyluk K, Karaca H. Near-fault and far-fault ground motion effects on cable-supported bridges. Procedia Eng 2017;199:3077–82. https://doi.org/10.1016/j.proeng.2017.09.421.
  • Li S, Xie L. Progress and trend on near-field problems in civil engineering. Acta Seismol Sin 2007;20:105–14. https://doi.org/10.1007/s11589-007-0105-0.
  • Sun B, Zhang S, Deng M, Wang C. Inelastic dynamic response and fragility analysis of arched hydraulic tunnels under as-recorded far-fault and near-fault ground motions. Soil Dyn Earthq Eng 2020;132:106070. https://doi.org/10.1016/j.soildyn.2020.106070.
  • Zhang C, Zhao M, Zhong Z, Du X. Seismic Intensity Measures and Fragility Analysis for Subway Stations Subjected to Near-fault Ground Motions with Velocity Pulses. J Earthq Eng 2022;26:8724–50. https://doi.org/10.1080/13632469.2021.1994056.
  • Cao V Van, Ronagh HR. Correlation between seismic parameters of far-fault motions and damage indices of low-rise reinforced concrete frames. Soil Dyn Earthq Eng 2014;66:102–12. https://doi.org/10.1016/j.soildyn.2014.06.020.
  • Mei X, Sheng Q, Cui Z. Effect of Near-Fault Pulsed Ground Motions on Seismic Response and Seismic Performance to Tunnel Structures. Shock Vib 2021;2021:1–18. https://doi.org/10.1155/2021/9999007.
  • Zhang S, Wang G. Effects of near-fault and far-fault ground motions on nonlinear dynamic response and seismic damage of concrete gravity dams. Soil Dyn Earthq Eng 2013;53:217–29. https://doi.org/10.1016/j.soildyn.2013.07.014.
  • Pacific Earthquake Engineering Research (PEER) Center. PEER ground motion database 2021. https://ngawest2.berkeley.edu/.
  • Ozturk KF. Investigation of the effects of mainshock-aftershock sequences on the dynamic responses of pipeline considering soil-pipeline interaction. Tunn Undergr Space Technol 2025;155:106231. https://doi.org/10.1016/j.tust.2024.106231.
  • Yoshida N. Seismic Ground Response Analysis. vol. 36. Dordrecht: Springer Netherlands; 2015. https://doi.org/10.1007/978-94-017-9460-2.
There are 40 citations in total.

Details

Primary Language English
Subjects Civil Geotechnical Engineering
Journal Section Research Article
Authors

Kaşif Furkan Öztürk 0000-0002-6325-4222

Early Pub Date August 28, 2025
Publication Date August 31, 2025
Submission Date May 9, 2025
Acceptance Date July 9, 2025
Published in Issue Year 2025 Volume: 12 Issue: 26

Cite

APA Öztürk, K. F. (2025). Investigation of Response of Embedded Pipe in Two-Layered Soil Subjected to Near-Fault and Far-Fault Earthquakes. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 12(26), 211-224. https://doi.org/10.54365/adyumbd.1696358
AMA Öztürk KF. Investigation of Response of Embedded Pipe in Two-Layered Soil Subjected to Near-Fault and Far-Fault Earthquakes. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. August 2025;12(26):211-224. doi:10.54365/adyumbd.1696358
Chicago Öztürk, Kaşif Furkan. “Investigation of Response of Embedded Pipe in Two-Layered Soil Subjected to Near-Fault and Far-Fault Earthquakes”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 26 (August 2025): 211-24. https://doi.org/10.54365/adyumbd.1696358.
EndNote Öztürk KF (August 1, 2025) Investigation of Response of Embedded Pipe in Two-Layered Soil Subjected to Near-Fault and Far-Fault Earthquakes. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 12 26 211–224.
IEEE K. F. Öztürk, “Investigation of Response of Embedded Pipe in Two-Layered Soil Subjected to Near-Fault and Far-Fault Earthquakes”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 26, pp. 211–224, 2025, doi: 10.54365/adyumbd.1696358.
ISNAD Öztürk, Kaşif Furkan. “Investigation of Response of Embedded Pipe in Two-Layered Soil Subjected to Near-Fault and Far-Fault Earthquakes”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 12/26 (August2025), 211-224. https://doi.org/10.54365/adyumbd.1696358.
JAMA Öztürk KF. Investigation of Response of Embedded Pipe in Two-Layered Soil Subjected to Near-Fault and Far-Fault Earthquakes. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2025;12:211–224.
MLA Öztürk, Kaşif Furkan. “Investigation of Response of Embedded Pipe in Two-Layered Soil Subjected to Near-Fault and Far-Fault Earthquakes”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 26, 2025, pp. 211-24, doi:10.54365/adyumbd.1696358.
Vancouver Öztürk KF. Investigation of Response of Embedded Pipe in Two-Layered Soil Subjected to Near-Fault and Far-Fault Earthquakes. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2025;12(26):211-24.