Development and Analysis of Metabolic Syndrome Feeds for Laboratory Animals (Rats and Mice)
Yıl 2024,
Sayı: 7, 15 - 23, 30.04.2024
Tayfun İde
,
Aşkın Nur Derinöz Erdoğan
,
Naim Deniz Ayaz
Öz
Feeding a high-fat diet causes obesity and metabolic disorders in rodents that resemble human metabolic syndrome. The aim of this study was the preparation and characterization of casein-based high-fat feeds to induce metabolic syndrome in laboratory animals (rats and mice). In this study, three different concentrations of high-fat feeds (24, 35 and 45%), which are stable, non-pollinating and shedding, were developed in pellet form. The parameters used in the characterization of feeds were established within the specific features required for these feeds to achieve their usage goals. To determine various components and properties of prepared feeds; In addition to physical, chemical and microbiological analyses, in-vivo nutritional tests were carried out by comparing them with imported commercial products developed for the same purposes. The results showed that the products obtained were in accordance with the production targets and were like the analysis values of the imported feeds compared. In conclusion, the study revealed that locally developed casein-based high-fat pellet feeds can be used reliably in studies of various companies and research centers to create obesity and metabolic disorders in experimental animals.
Proje Numarası
KOSGEB - Laboratuvar hayvanlarında (rat ve fare) obesite, diabet, metabolik bozukluk hastalıkları oluşturan kazein bazlı yüksek yağlı emülsiyon tipi yemlerin üretimi
Kaynakça
- Aydin, S., Aksoy, A., Aydin, S., Kalayci, M., Yilmaz, M., Kuloglu, T., Citil, C. ve Catak, Z. (2014). Today’s and yesterday’s of pathophysiology: Biochemistry of metabolic syndrome and animal models. Nutrition, 30(1), 1–9. https://doi.org/10.1016/j.nut.2013.05.013
- Bellush, L. L. ve Rowland, N. E. (1986). Dietary self-selection in diabetic rats: An overview. Brain Research Bulletin, 17(5), 653–661. https://doi.org/10.1016/0361-9230(86)90197-8
- Bhatti, J. S., Bhatti, G. K. ve Reddy, P. H. (2017). Mitochondrial dysfunction and oxidative stress in metabolic disorders — A step towards mitochondria based therapeutic strategies. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1863(5), 1066–1077. https://doi.org/10.1016/j.bbadis.2016.11.010
- Botsoglou, N. A., Fletouris, D. J., Papageorgiou, G. E., Vassilopoulos, V. N., Mantis, A. J. ve Trakatellis, A. G. (1994). Rapid, Sensitive, and Specific Thiobarbituric Acid Method for Measuring Lipid Peroxidation in Animal Tissue, Food, and Feedstuff Samples. Journal of Agricultural and Food Chemistry, 42(9), 1931–1937. https://doi.org/10.1021/jf00045a019
- Budohoski, L., Panczenko-Kresowska, B., Langfort, J., Zernicka, E., Dubaniewicz, A., Ziemlanski, S., Challiss, R. A. J. ve Newsholme, E. A. (1993). Effects of saturated and polyunsaturated fat enriched diet on the skeletal muscle insulin sensitivity in young rats. Journal of Physiology and Pharmacology, 44(4), 391–398.
- Buettner, R. (2006). Defining high-fat-diet rat models: metabolic and molecular effects of different fat types. Journal of Molecular Endocrinology, 36(3), 485–501. https://doi.org/10.1677/jme.1.01909
- Buettner, R., Schölmerich, J. ve Bollheimer, L. C. (2007). High-fat Diets: Modeling the Metabolic Disorders of Human Obesity in Rodents*. Obesity, 15(4), 798–808. https://doi.org/10.1038/oby.2007.608
- Donohoue, P. A. (2004). Obesity. In: Behrman, R. E., Kliegman, R. M., Jenson, H. B., eds. Nelson Textbook of Pediatrics 17th ed. Philadelphia: W. B. Saunders, 173-177.
- Grundy, S. M. (2005). A constellation of complications: The metabolic syndrome. Clinical Cornerstone, 7(2-3), 36–45. https://doi.org/10.1016/s1098-3597(05)80066-3
- Harris, R. B. S. ve Kor, H. (1992). Insulin Insensitivity Is Rapidly Reversed in Rats by Reducing Dietary Fat from 40 to 30% of Energy. The Journal of Nutrition, 122(9), 1811–1822. https://doi.org/10.1093/jn/122.9.1811
- Hoffmann, W., Gärtner, J., Lück, K., Johannsen, N. ve Maurer, A. (2012). Effect of emulsifying salts containing potassium on the quality of block-type processed cheese. International Dairy Journal, 25(1), 66–72. https://doi.org/10.1016/j.idairyj.2011.11.010
- İde, T. (2003). The Effect of Animal Nutrition on Experimental Findings. Basic Principles of Laboratory Animal Science, 6, 109-125.
- Lingohr, M. K., Buettner, R. ve Rhodes, C. J. (2002). Pancreatic β-cell growth and survival – a role in obesity-linked type 2 diabetes? Trends in Molecular Medicine, 8(8), 375–384. https://doi.org/10.1016/s1471-4914(02)02377-8
- Merone, L. ve McDermott, R. (2017). Nutritional anti-inflammatories in the treatment and prevention of type 2 diabetes mellitus and the metabolic syndrome. Diabetes Research and Clinical Practice, 127, 238–253. https://doi.org/10.1016/j.diabres.2017.02.019
- Moore, B. J. (1987). The Cafeteria Diet—An Inappropriate Tool for Studies of Thermogenesis. The Journal of Nutrition, 117(2), 227–231. https://doi.org/10.1093/jn/117.2.227
- Movahedian, A., Zolfaghari, B., Sajjadi, S. E., Moknatjou, R. (2010). Antihyperlipidemic effect of Peucedanum pastinacifolium extract in streptozotocin‐induced diabetic rats. Clinics (Sao Paulo), 65, 629–633. https://doi.org/10.1590/S1807-59322010001200029
- Oakes, N. D., Cooney, G. J., Camilleri, S., Chisholm, D. J. ve Kraegen, E. W. (1997). Mechanisms of Liver and Muscle Insulin Resistance Induced by Chronic High-Fat Feeding. Diabetes, 46(11), 1768–1774. https://doi.org/10.2337/diab.46.11.1768
- Panchal, S. K. ve Brown, L. (2011). Rodent Models for Metabolic Syndrome Research. Journal of Biomedicine and Biotechnology, 2011, 1–14. https://doi.org/10.1155/2011/351982
- Roberts, C. K., Barnard, R. J., Sindhu, R. K., Jurczak, M., Ehdaie, A. ve Vaziri, N. D. (2006). Oxidative stress and dysregulation of NAD(P)H oxidase and antioxidant enzymes in diet-induced metabolic syndrome. Metabolism, 55(7), 928–934. https://doi.org/10.1016/j.metabol.2006.02.022
- Samuels, L. T., Gilmore, R. C. ve Reinecke, R. M. (1948). The Effect of Previous Diet on the Ability of Animals to do Work During Subsequent Fasting. The Journal of Nutrition, 36(5), 639–651. https://doi.org/10.1093/jn/36.5.639
- Samuels, L. T., Reinecke, R. M. ve Ball, H. A. (1942). Effect of diet on glucose tolerance and liver and muscle glycogen of hypophysectomized and normal rats. Endocrinology, 31(1), 42–45. https://doi.org/10.1210/endo-31-1-42
- Şekerli, Z. ve Güneş Bayır, A. (2024). Sindirim Sistemindeki Mikroorganizmaların Obezite, Hipertansiyon ve İnsülin Direncine Etkileri, "Sağlık Biliminde Araştırmalar ve Değerlendirmeler", Prof. Dr. Engin ŞAHNA, Prof. Dr. Hasan AKGÜL, Prof. Dr. Zeliha SELAMOĞLU, Editör, Gece Kitaplığı, Ankara, ss.111-124.
- Schatz, K., Hoffmann, W., Schrader, K. ve Maurer, A. (2014). Effect of emulsifying salts containing potassium on the melting properties of block-type dairy cheese analogue. International Journal of Dairy Technology, 67(2), 202–210. https://doi.org/10.1111/1471-0307.12119
- Van Heek, M., Compton, D. S., France, C. F., Tedesco, R. P., Fawzi, A. B., Graziano, M. P., Sybertz, E. J., Strader, C. D. ve Davis, H. R. (1997). Diet-induced obese mice develop peripheral, but not central, resistance to leptin. Journal of Clinical Investigation, 99(3), 385–390. https://doi.org/10.1172/jci119171
- Warden, C. H. ve Fisler, J. S. (2008). Comparisons of Diets Used in Animal Models of High-Fat Feeding. Cell Metabolism, 7(4), 277. https://doi.org/j.cmet.2008.03.014
Laboratuvar Hayvanları (Sıçanlar ve Fareler) İçin Metabolik Sendromlu Yemlerin Geliştirilmesi ve Analizi
Yıl 2024,
Sayı: 7, 15 - 23, 30.04.2024
Tayfun İde
,
Aşkın Nur Derinöz Erdoğan
,
Naim Deniz Ayaz
Öz
Yüksek yağlı diyetle beslenme, kemirgenlerde insandaki metabolik sendroma benzeyen obeziteye ve metabolik bozukluklara neden olmaktadır. Bu çalışmanın amacı laboratuvar hayvanlarınde (sıçan ve fare) metabolic sendrom oluşturmak için kazein bazlı yüksek yağlı yemlerin hazırlanması ve karakterizasyonudur. Bu çalışmada, stabil, tozlaşmayan ve dökülme özelliğine sahip üç farklı konsantrasyonda yüksek yağlı yemler (%24, 35 ve %45) pelet formda geliştirilmiştir. Yemlerin karakterizasyonunda kullanılan parametreler bu yemlerin kullanım hedeflerine ulaşması için gerekli olan belirli özellikler dahilinde oluşturulmuştur. Hazırlanan yemlerde çeşitli bileşen ve özelliklerin belirlenmesi amacıyla; fiziksel, kimyasal, mikrobiyolojik analizlerin yanı sıra in-vivo beslenme testleri aynı amaçlarla geliştirilmiş ithal ticari ürünler ile karşılaştırılarak gerçekleştirilmiştir. Sonuçlar, elde edilen ürünlerin üretim hedeflerine uygun olarak elde edildiğini ve karşılaştırıldığı ithal yemlerin analiz değerlerine benzer olduğunu göstermiştir. Sonuç olarak çalışmada, yerli olarak geliştirilen kazein bazlı yüksek yağlı pelet yemlerin çeşitli firma ve araştırma merkezlerinin deney hayvanlarında obezite ve metabolik bozukluk oluşturmak çalışmalarında güvenilir bir şekilde kullanılabileceği ortaya konmuştur.
Etik Beyan
In the study, experimental animal studies were performed in Kırıkkale University Hüseyin Aytemiz Experimental Animal Unit and Animal experiments were carried out with the approval of the Kırıkkale University Animal Experiments Local Ethics Committee (No: 2018-04-28).
Proje Numarası
KOSGEB - Laboratuvar hayvanlarında (rat ve fare) obesite, diabet, metabolik bozukluk hastalıkları oluşturan kazein bazlı yüksek yağlı emülsiyon tipi yemlerin üretimi
Teşekkür
This work was supported by KOSGEB project entitled “Production of casein-based high-fat emulsion type feeds that cause obesity, diabetes and metabolic disorders in laboratory animals (rats and mice). (Laboratuvar hayvanlarında (rat ve fare) obesite, diabet, metabolik bozukluk hastalıkları oluşturan kazein bazlı yüksek yağlı emülsiyon tipi yemlerin üretimi)”
Kaynakça
- Aydin, S., Aksoy, A., Aydin, S., Kalayci, M., Yilmaz, M., Kuloglu, T., Citil, C. ve Catak, Z. (2014). Today’s and yesterday’s of pathophysiology: Biochemistry of metabolic syndrome and animal models. Nutrition, 30(1), 1–9. https://doi.org/10.1016/j.nut.2013.05.013
- Bellush, L. L. ve Rowland, N. E. (1986). Dietary self-selection in diabetic rats: An overview. Brain Research Bulletin, 17(5), 653–661. https://doi.org/10.1016/0361-9230(86)90197-8
- Bhatti, J. S., Bhatti, G. K. ve Reddy, P. H. (2017). Mitochondrial dysfunction and oxidative stress in metabolic disorders — A step towards mitochondria based therapeutic strategies. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1863(5), 1066–1077. https://doi.org/10.1016/j.bbadis.2016.11.010
- Botsoglou, N. A., Fletouris, D. J., Papageorgiou, G. E., Vassilopoulos, V. N., Mantis, A. J. ve Trakatellis, A. G. (1994). Rapid, Sensitive, and Specific Thiobarbituric Acid Method for Measuring Lipid Peroxidation in Animal Tissue, Food, and Feedstuff Samples. Journal of Agricultural and Food Chemistry, 42(9), 1931–1937. https://doi.org/10.1021/jf00045a019
- Budohoski, L., Panczenko-Kresowska, B., Langfort, J., Zernicka, E., Dubaniewicz, A., Ziemlanski, S., Challiss, R. A. J. ve Newsholme, E. A. (1993). Effects of saturated and polyunsaturated fat enriched diet on the skeletal muscle insulin sensitivity in young rats. Journal of Physiology and Pharmacology, 44(4), 391–398.
- Buettner, R. (2006). Defining high-fat-diet rat models: metabolic and molecular effects of different fat types. Journal of Molecular Endocrinology, 36(3), 485–501. https://doi.org/10.1677/jme.1.01909
- Buettner, R., Schölmerich, J. ve Bollheimer, L. C. (2007). High-fat Diets: Modeling the Metabolic Disorders of Human Obesity in Rodents*. Obesity, 15(4), 798–808. https://doi.org/10.1038/oby.2007.608
- Donohoue, P. A. (2004). Obesity. In: Behrman, R. E., Kliegman, R. M., Jenson, H. B., eds. Nelson Textbook of Pediatrics 17th ed. Philadelphia: W. B. Saunders, 173-177.
- Grundy, S. M. (2005). A constellation of complications: The metabolic syndrome. Clinical Cornerstone, 7(2-3), 36–45. https://doi.org/10.1016/s1098-3597(05)80066-3
- Harris, R. B. S. ve Kor, H. (1992). Insulin Insensitivity Is Rapidly Reversed in Rats by Reducing Dietary Fat from 40 to 30% of Energy. The Journal of Nutrition, 122(9), 1811–1822. https://doi.org/10.1093/jn/122.9.1811
- Hoffmann, W., Gärtner, J., Lück, K., Johannsen, N. ve Maurer, A. (2012). Effect of emulsifying salts containing potassium on the quality of block-type processed cheese. International Dairy Journal, 25(1), 66–72. https://doi.org/10.1016/j.idairyj.2011.11.010
- İde, T. (2003). The Effect of Animal Nutrition on Experimental Findings. Basic Principles of Laboratory Animal Science, 6, 109-125.
- Lingohr, M. K., Buettner, R. ve Rhodes, C. J. (2002). Pancreatic β-cell growth and survival – a role in obesity-linked type 2 diabetes? Trends in Molecular Medicine, 8(8), 375–384. https://doi.org/10.1016/s1471-4914(02)02377-8
- Merone, L. ve McDermott, R. (2017). Nutritional anti-inflammatories in the treatment and prevention of type 2 diabetes mellitus and the metabolic syndrome. Diabetes Research and Clinical Practice, 127, 238–253. https://doi.org/10.1016/j.diabres.2017.02.019
- Moore, B. J. (1987). The Cafeteria Diet—An Inappropriate Tool for Studies of Thermogenesis. The Journal of Nutrition, 117(2), 227–231. https://doi.org/10.1093/jn/117.2.227
- Movahedian, A., Zolfaghari, B., Sajjadi, S. E., Moknatjou, R. (2010). Antihyperlipidemic effect of Peucedanum pastinacifolium extract in streptozotocin‐induced diabetic rats. Clinics (Sao Paulo), 65, 629–633. https://doi.org/10.1590/S1807-59322010001200029
- Oakes, N. D., Cooney, G. J., Camilleri, S., Chisholm, D. J. ve Kraegen, E. W. (1997). Mechanisms of Liver and Muscle Insulin Resistance Induced by Chronic High-Fat Feeding. Diabetes, 46(11), 1768–1774. https://doi.org/10.2337/diab.46.11.1768
- Panchal, S. K. ve Brown, L. (2011). Rodent Models for Metabolic Syndrome Research. Journal of Biomedicine and Biotechnology, 2011, 1–14. https://doi.org/10.1155/2011/351982
- Roberts, C. K., Barnard, R. J., Sindhu, R. K., Jurczak, M., Ehdaie, A. ve Vaziri, N. D. (2006). Oxidative stress and dysregulation of NAD(P)H oxidase and antioxidant enzymes in diet-induced metabolic syndrome. Metabolism, 55(7), 928–934. https://doi.org/10.1016/j.metabol.2006.02.022
- Samuels, L. T., Gilmore, R. C. ve Reinecke, R. M. (1948). The Effect of Previous Diet on the Ability of Animals to do Work During Subsequent Fasting. The Journal of Nutrition, 36(5), 639–651. https://doi.org/10.1093/jn/36.5.639
- Samuels, L. T., Reinecke, R. M. ve Ball, H. A. (1942). Effect of diet on glucose tolerance and liver and muscle glycogen of hypophysectomized and normal rats. Endocrinology, 31(1), 42–45. https://doi.org/10.1210/endo-31-1-42
- Şekerli, Z. ve Güneş Bayır, A. (2024). Sindirim Sistemindeki Mikroorganizmaların Obezite, Hipertansiyon ve İnsülin Direncine Etkileri, "Sağlık Biliminde Araştırmalar ve Değerlendirmeler", Prof. Dr. Engin ŞAHNA, Prof. Dr. Hasan AKGÜL, Prof. Dr. Zeliha SELAMOĞLU, Editör, Gece Kitaplığı, Ankara, ss.111-124.
- Schatz, K., Hoffmann, W., Schrader, K. ve Maurer, A. (2014). Effect of emulsifying salts containing potassium on the melting properties of block-type dairy cheese analogue. International Journal of Dairy Technology, 67(2), 202–210. https://doi.org/10.1111/1471-0307.12119
- Van Heek, M., Compton, D. S., France, C. F., Tedesco, R. P., Fawzi, A. B., Graziano, M. P., Sybertz, E. J., Strader, C. D. ve Davis, H. R. (1997). Diet-induced obese mice develop peripheral, but not central, resistance to leptin. Journal of Clinical Investigation, 99(3), 385–390. https://doi.org/10.1172/jci119171
- Warden, C. H. ve Fisler, J. S. (2008). Comparisons of Diets Used in Animal Models of High-Fat Feeding. Cell Metabolism, 7(4), 277. https://doi.org/j.cmet.2008.03.014