Research Article
BibTex RIS Cite

PGPB Strainleri ile Biyo-priming Uygulaması Börülce Üretiminde Tane Verimi ve Net Kazancı Artırır

Year 2024, , 79 - 88, 29.05.2024
https://doi.org/10.17097/agricultureatauni.1418425

Abstract

21. yüzyılda, sentetik gübre kullanımına ilişkin çevresel sorunlar nedeniyle sürdürülebilir çözümlerin arayışıyla tetiklenen faydalı mikroorganizmaların biyolojik gübre olarak kullanımı dikkate değer bir fenomen haline gelmiştir. Bu çalışma, Siirt ekolojik koşullarında bitki gelişimini teşvik edici bakteri (PGPB) suşları ile biyo-priming uygulamasının etkisini sentetik gübre ve rizobium inokülasyonuna göre karşılaştırmayı amaçlamıştır. Tarla denemesi, 2019 yaz sezonunda Siirt Üniversitesi (Siirt, Türkiye) arazisinde tesadüf blokları deneme desenine göre dört tekerrürlü olarak gerçekleştirilmiştir. Çalışmada diamonyum fosfat olarak üç sentetik gübre dozu (SF1: 100 kg ha-1, SF2: 200 kg ha-1, SF3: 300 kg ha-1) ve yedi biyolojik gübre uygulaması (B1: TV61C, B2: TV62C, B3: TV126C, B4: TV24C, B5: TV53D, BMIX: TV119E+TV126C, RZB: Bradyrhizobium sp.) kontrolle (kimyasal gübre yok+hidro-priming) karşılaştırılmıştır. Araştırma sonuçları, 300 kg ha-1 DAP ve PGPB konsorsiyumunun tarımsal özellikler üzerinde en iyi sonuçları verdiğini göstermiştir. Ancak özellikle konsorsiyum şeklinde uygulandığında, PGPB suşları sentetik gübreleme ile çok yakın performans göstermiştir. Dahası, 300 kg ha-1 DAP ve PGPB konsorsiyumunun hidro-priming uygulanan bitkiler üzerinde %54,6 ve %42,4 artış sağlayarak, sırasıyla $654 ve $721,6 net kazanç sağladığı belirlenmiştir. Dolayısıyla, üstün PGPB suşlarıyla biyo-priming uygulaması, düşük uygulama maliyetine bağlı olarak sentetik gübreye kıyasla daha yüksek net kazanç sağlamıştır. Sonuç olarak, PGPB suşlarıyla biyo-priming uygulaması, börülce üretiminde kullanılabilir, sürdürülebilir ve düşük maliyetli bir strateji potansiyeline sahiptir.

References

  • Abdelaziz, A.M., Hashem, A.H., El-Sayyad, G.S., El-Wakil, D.A., Selim, S., Alkhalifah, D.H.M., & Attia, M.S. (2023). Biocontrol of soil borne diseases by plant growth promoting rhizobacteria. Tropical Plant Pathology, 48, 105–127.
  • Akbar, M., Aslam, N., Khalil, Y., Akhtar, S., Siddiqi, E.H., & Iqbal, M.S. (2019). Effects of seed priming with plant growth-promoting rhizobacteria on wheat yield and soil properties under contrasting soils. Journal of Plant Nutrition, 42(17), 2080–2091.
  • Aswathi, K.P.R., Kalaji, H.M., & Puthur, J.T. (2022). Seed priming of plants aiding in drought stress tolerance and faster recovery: A review. Plant Growth Regulation, 97, 235–253.
  • Cai, A., Xu, M., Wang, B., Zhang, W., Liang, G., Hou, E., & Luo, Y. (2019). Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil and Tillage Research, 189, 168–175.
  • Ceritoglu, M., & Erman, M. (2020). Determination of some agronomic traits and their correlation with yield components in cowpea. Selcuk Journal of Agriculture and Food Sciences, 34(2), 154–161.
  • Ceritoglu, M., & Erman, M. (2021). Effect of silicon priming treatments on germination and some agronomic traits in lentil. In 3. International African Conference on Current Studies, (pp. 436–444), February 27–28, Abomey-Calavi, Benin.
  • Cheib, M., & Gachomo, E.W. (2023). The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC Plant Biology, 23, 407.
  • Çığ, F., Erman, M., & Ceritoglu, M. (2021). Combined application of microbial inoculation and biochar to mitigate drought stress in wheat. Journal of The Institute of Science and Technology, 11(Special Issues), 3528–3538. (In Turkish).
  • CIMMYT, (1988). An Economic Training Manual: From agronomic data to farmer recommendations. CIMMYT Press.
  • Çakmakçı, R., Erman, M., Kotan, R., Çığ, F., Karagöz, K., & Sezen, M. (2010). Growth promotion and yield enhancement of sugar beet and wheat by application of plant growth promption rhizobacteria, Proceedings International Conference on Organic Agriculture in Scope of Environmental Problems, 3-7 February, Famagusta, Cyprus, pp. 198–202.
  • Çulha, G., & Bozoğlu, H. (2017). The effect of different cultivation on seed quality of Amazon and Sırma varieties. Kahramanmaraş Sütçü İmam University Journal of Natural Sciences, 20(Special Issues), 362–366.
  • Domínguez-Perles, R., Machado, N., Abraão, A.S., Carnide, V., Ferreira, L., Rodrigues, M., Rosa, E.A.D.S., & Barros, A.I.R.A. (2016). Chemometric analysis on free amino acids and proximate compositional data for selecting cowpea (Vigna unguiculata L) diversity. Journal of Food Composition and Analysis, 53, 69–76.
  • Erman, M., & Ceritoglu, M. (2022). Alleviatıon of phosphorus deficiency in organic agriculture by phosphorus solubilizing bacteria. In T. Akar, İ. Daşdemir, İ. Cengizler (Eds.) Current Research in Agriculture, Forestry and Aquaculture. Gece Publishing, Ankara.
  • FAO. (2023). Cowpea production during 2021 worldwide. https://www.fao.org/faostat/en/#data/QCL (Accessed date: 19 December 2023)
  • Farooq, M., Gogoi, N., Hussain, M., Bartkahur, S., Paul, S., Bharadwaj, N., Migdadi, H.M., Alghamdi, S.S., & Siddique, K.H.M. (2017). Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiology and Biochemistry, 118, 199–217.
  • Farooq, M., Romdhane, L., Al Sulti, M.K.R.A., Rehman, A., Al-Busaidi, W.M., & Lee, D.J. (2019). Morphological, physiological and biochemical aspects of osmopriming‐induced drought tolerance in lentil. Journal of Agronomy and Crop Science, 206(2), 176–186.
  • Fasusi, O.A., Babalola, O.O., & Adejumo, T.O. (2023). Harnessing of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi in agroecosystem sustainability. CABI Agriculture and Bioscience, 4, 26.
  • Galindo, F.S., Pagliari, P.H., da Silva, E.C., Silva, V.M., Fernandes, G.C., Rodrigues, W.L., Céu, E.G.O., de Lima, B.H., Jalal, A., Muraoka, T., Buzetti, S., Lavres, J., Jalal, A., Filho, M.C.M.T. (2022). Co-Inoculation with Azospirillum brasilense and Bradyrhizobium sp. enhances nitrogen uptake and yield in field-grown cowpea and did not change N-fertilizer recovery. Plants, 11(14), 1847.
  • Geng, Y., Bashir, M.A., Zhao, Y., Luo, J., Liu, X., Li, F., Wang, H., Raza, Q.U.A., Rehim, A., Zhang, X., & Liu, H. (2022). Long-term fertilizer reduction in greenhouse tomato-cucumber rotation system to assess N utilization, leaching, and cost efficiency. Sustainability, 14(8), 4647.
  • Guo, K., Yang, J., Yu, N., Lo, L., & Wang, E. (2023). Biological nitrogen fixation in cereal crops: Progress, strategies, and perspectives. Plant Communications, 4, 100499.
  • Gupta, S.K., Naresh, R.K., Chandra, M.S., Chand, S.W., Kumar, B.N., & Chandana, P. (2020). Influence of organic and synthetic fertilizers on soil carbon pool, soil aggregation and associated carbon fractions in conservation agriculture ecosystem: A review. Journal of Pharmacognosy and Phytochemistry, 9(2), 1038–1046.
  • Hasanuzzaman, M., & Fotopoulos, V. (2019). Priming and Pretreatment of Seeds and Seedlings. Springer Nature, Singapore.
  • Hoque, N., Hannan, A., Imran, S., Paul, N.C., Mondal, F., Sadhin, M.R., Bristi, J.M., Dola, F.S., Hanif, A., Ye, A., Brestic, M., & Rhaman, M.S. (2023). Plant growth-promoting rhizobacteria-mediated adaptive responses of plants under salinity stress. Journal of Plant Growth Regulation, 42, 1307–1326.
  • Huebner, L. (2022). Long-Term control of desertification: ıs organic farming superior to conventional? soil and established arid cultivation practices at SEKEM, Egypt. In: E.S.E. Omran, A.M. Negm (Eds.), Egypt’s Strategy to Meet the Sustainable Development Goals and Agenda 2030: Researchers' Contributions. Sustainable Development Goals Series (pp. 27–42). Springer, Cham.
  • Imtiaz, H., Shiraz, M., Mir, A.R., Siddiqui, H., & Hayat, S. (2023). Nano-priming techniques for plant physio-biochemistry and stress tolerance. Journal of Plant Growth Regulation, 42, 6870–6890.
  • Ishikawa, H., Batieno, B.J., Fatokun, C., Boukar, O.A. (2022). High plant density and the split application of chemical fertilizer increased the grain and protein content of cowpea (Vigna unguiculata) in Burkina Faso, West Africa. Agriculture, 12(2), 199.
  • Jayathilake, C., Visvanathan, R., Deen, A., Bangamuwage, R., & Jayawardana, B.C. (2018). Cowpea: an overview on its nutritional facts and health benefits. Journal of the Science of Food and Agriculture, 98(13), 4793–4806.
  • Kebede, E., Bekeko, Z., & Moral, M.T. (2020). Expounding the production and importance of cowpea (Vigna unguiculata (L.) Walp.) in Ethiopia. Cogent Food & Agriculture, 6(1), 1769805.
  • Kumar, A., Droby, S., White, J.F., Singh, V.K., Singh, S.K., Zhimo, V.Y., & Biasi, A. (2020). Endophytes and seed priming: Agricultural applications and future prospects. Microbial Endophytes, 107–124.
  • Ma, Y., Látr, A., Rocha, I., Freitas, H., Vosátka, M., & Oliveira, R.S. (2019). Delivery of inoculum of rhizophagus irregularis via seed coating in combination with Pseudomonas libanensis for cowpea production. Agronomy, 9(1), 33.
  • Okoth, J.K., Ochola, S.A., Gikonyo, N.K., & Makokha, A. (2017). Development of a nutrient-dense complementary food using amaranth-sorghum grains. Food Science & Nutrition, 5, 86–93.
  • Owade, J.O., Abong, G., Okoth, M., & Mwangombe, A.W. (2020). A review of the contribution of cowpea leaves to food and nutrition security in East Africa. Food Science & Nutrition, 8, 36–47.
  • Özçelebi, H.Ş., & Erman, M. (2021). Determining adaptation of some cowpea (Vigna unguiculata L. Walp) local populations and registered cultivars to Siirt ecological conditions. ISPEC Journal of Agricultural Sciences, 5(1), 235–245. (In Turkish).
  • Rodrigues, A.C., Silveira, J.A.G., Bonifacio, A., & Figueiredo, M.V.V. (2013). Metabolism of nitrogen and carbon: Optimization of biological nitrogen fixation and cowpea development. Soil Biology and Biochemistry, 67, 226-234.
  • Sheteiwy, M. S., Shao, H., Qi, W., Daly, P., Sharma, A., Shaghaleh, H., Hamoud, Y.A., El-Esawi, M.A., Pan, R., Wan, Q., & Lu, H. (2021). Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings. Journal of the Science of Food and Agriculture, 101(5), 2027–2041.
  • Singh, V.K., Singh, R., Tripathi, S., Devi, R.S., Srivastava, P., Singh, P., Kumar, A., & Bhadouria, R. (2020). Seed priming: state of the art and new perspectives in the era of climate change. In M.N.V. Prasad, M. Pietzykowski (Eds.), Climate Change and Soil Interactions (pp. 143–170). Elsevier, Amsterdam.
  • Sonkurt, M., & Çığ, F. (2019). The effect of plant growth-promoting bacteria on the development, yield and yield components of bread (Triticum aestivum L.) and durum (Triticum durum) wheats. Applied Ecology and Environmental Research, 17(2), 3877–3896.
  • Timofeeva, A.M., Galyamova, M.R., Sedykh, S.E. (2023). Plant growth-promoting bacteria of soil: designing of consortia beneficial for crop production. Microorganisms, 11(12), 2864.
  • Trehan, I., Benzoni, N.S., Wang, A.Z., Bollinger, L.B., Ngoma, T.N., Chimimba, U.K., Stephenson, S.E., Maleta, K.M., & Manary, M.J. (2015). Common beans and cowpeas as complementary foods to reduce environmental enteric dysfunction and stunting in Malawian children: study protocol for two randomized controlled trials. Trials, 16, 520.
  • Tripathi, S., Srivastava, P., Devi, R.S., Bhadouria, R., 2020. Influence of synthetic fertilizers and pesticides on soil health and soil microbiology. In: M.V.N. Prasad (Ed.) Agrochemicals Detection, Treatment and Remediation (pp. 25–54). Butterworth-Heinemann.
  • Zhang, J., Fan, C., Zhao, M., Wang, Z., Jiang, S., Jin, Z., Bei, K., Zheng, X., Wu, S., Lin, P., & Miu, H. (2023). A comprehensive review on mixotrophic denitrification processes for biological nitrogen removal. Chemosphere, 313, 137474.
  • Zhu, Y., Sheaffer, C.C., Russelle, M.P., & Vance, C.P. (1988). Dry matter accumulation and dinitrogen fixation of annual Medicago species. Agronomy Journal, 90(1), 103–108.

Bio-priming Treatment with PGPB Strains in Cowpea Production Increases Grain Yield and Net Income

Year 2024, , 79 - 88, 29.05.2024
https://doi.org/10.17097/agricultureatauni.1418425

Abstract

In the 21st century, the use of beneficial microorganisms as biological fertilizers has become a notable phenomenon, driven by the ongoing search for sustainable solutions due to environmental issues associated with synthetic fertilizer use. This study aimed to investigate the effect of bio-priming with plant growth-promoting bacteria (PGPB) strains comparing them with synthetic fertilizer and rhizobium inoculation in Siirt ecological conditions. The field experiment was laid out according to a completely randomized design with four replications in the arable land of Siirt University (Siirt, Türkiye) during the 2019 summer season. Three synthetic fertilizer doses as diammonium phosphate (SF1: 100 kg ha-1, SF2: 200 kg ha-1, SF3: 300 kg ha-1) and seven biological fertilizer treatments (B1: TV61C, B2: TV62C, B3: TV126C, B4: TV24C, B5: TV53D, BMIX: TV119E+TV126C, RZB: Bradyrhizobium sp.) were compared with control (no fertilization+hydro-priming) in the study. The research results indicated that 300 kg ha-1 DAP and PGPB consortia showed the best results on agronomic characteristics. However, particularly when applied in the form of a consortium, PGPB strains exhibited performance very close to synthetic fertilization. Moreover, it was determined that 300 kg ha-1 DAP and PGPB consortia increased grain yield over hydro-primed plants by 54.6% and 42.4%, while they provided a net income of $654 and $721.6, respectively. Thus, bio-priming with PGPB increased higher net income compared with synthetic fertilizer due to lower treatment costs. In conclusion, bio-priming with PGPB strains has the potential of useful, sustainable and cost-effective strategy in cowpea production.

References

  • Abdelaziz, A.M., Hashem, A.H., El-Sayyad, G.S., El-Wakil, D.A., Selim, S., Alkhalifah, D.H.M., & Attia, M.S. (2023). Biocontrol of soil borne diseases by plant growth promoting rhizobacteria. Tropical Plant Pathology, 48, 105–127.
  • Akbar, M., Aslam, N., Khalil, Y., Akhtar, S., Siddiqi, E.H., & Iqbal, M.S. (2019). Effects of seed priming with plant growth-promoting rhizobacteria on wheat yield and soil properties under contrasting soils. Journal of Plant Nutrition, 42(17), 2080–2091.
  • Aswathi, K.P.R., Kalaji, H.M., & Puthur, J.T. (2022). Seed priming of plants aiding in drought stress tolerance and faster recovery: A review. Plant Growth Regulation, 97, 235–253.
  • Cai, A., Xu, M., Wang, B., Zhang, W., Liang, G., Hou, E., & Luo, Y. (2019). Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil and Tillage Research, 189, 168–175.
  • Ceritoglu, M., & Erman, M. (2020). Determination of some agronomic traits and their correlation with yield components in cowpea. Selcuk Journal of Agriculture and Food Sciences, 34(2), 154–161.
  • Ceritoglu, M., & Erman, M. (2021). Effect of silicon priming treatments on germination and some agronomic traits in lentil. In 3. International African Conference on Current Studies, (pp. 436–444), February 27–28, Abomey-Calavi, Benin.
  • Cheib, M., & Gachomo, E.W. (2023). The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC Plant Biology, 23, 407.
  • Çığ, F., Erman, M., & Ceritoglu, M. (2021). Combined application of microbial inoculation and biochar to mitigate drought stress in wheat. Journal of The Institute of Science and Technology, 11(Special Issues), 3528–3538. (In Turkish).
  • CIMMYT, (1988). An Economic Training Manual: From agronomic data to farmer recommendations. CIMMYT Press.
  • Çakmakçı, R., Erman, M., Kotan, R., Çığ, F., Karagöz, K., & Sezen, M. (2010). Growth promotion and yield enhancement of sugar beet and wheat by application of plant growth promption rhizobacteria, Proceedings International Conference on Organic Agriculture in Scope of Environmental Problems, 3-7 February, Famagusta, Cyprus, pp. 198–202.
  • Çulha, G., & Bozoğlu, H. (2017). The effect of different cultivation on seed quality of Amazon and Sırma varieties. Kahramanmaraş Sütçü İmam University Journal of Natural Sciences, 20(Special Issues), 362–366.
  • Domínguez-Perles, R., Machado, N., Abraão, A.S., Carnide, V., Ferreira, L., Rodrigues, M., Rosa, E.A.D.S., & Barros, A.I.R.A. (2016). Chemometric analysis on free amino acids and proximate compositional data for selecting cowpea (Vigna unguiculata L) diversity. Journal of Food Composition and Analysis, 53, 69–76.
  • Erman, M., & Ceritoglu, M. (2022). Alleviatıon of phosphorus deficiency in organic agriculture by phosphorus solubilizing bacteria. In T. Akar, İ. Daşdemir, İ. Cengizler (Eds.) Current Research in Agriculture, Forestry and Aquaculture. Gece Publishing, Ankara.
  • FAO. (2023). Cowpea production during 2021 worldwide. https://www.fao.org/faostat/en/#data/QCL (Accessed date: 19 December 2023)
  • Farooq, M., Gogoi, N., Hussain, M., Bartkahur, S., Paul, S., Bharadwaj, N., Migdadi, H.M., Alghamdi, S.S., & Siddique, K.H.M. (2017). Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiology and Biochemistry, 118, 199–217.
  • Farooq, M., Romdhane, L., Al Sulti, M.K.R.A., Rehman, A., Al-Busaidi, W.M., & Lee, D.J. (2019). Morphological, physiological and biochemical aspects of osmopriming‐induced drought tolerance in lentil. Journal of Agronomy and Crop Science, 206(2), 176–186.
  • Fasusi, O.A., Babalola, O.O., & Adejumo, T.O. (2023). Harnessing of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi in agroecosystem sustainability. CABI Agriculture and Bioscience, 4, 26.
  • Galindo, F.S., Pagliari, P.H., da Silva, E.C., Silva, V.M., Fernandes, G.C., Rodrigues, W.L., Céu, E.G.O., de Lima, B.H., Jalal, A., Muraoka, T., Buzetti, S., Lavres, J., Jalal, A., Filho, M.C.M.T. (2022). Co-Inoculation with Azospirillum brasilense and Bradyrhizobium sp. enhances nitrogen uptake and yield in field-grown cowpea and did not change N-fertilizer recovery. Plants, 11(14), 1847.
  • Geng, Y., Bashir, M.A., Zhao, Y., Luo, J., Liu, X., Li, F., Wang, H., Raza, Q.U.A., Rehim, A., Zhang, X., & Liu, H. (2022). Long-term fertilizer reduction in greenhouse tomato-cucumber rotation system to assess N utilization, leaching, and cost efficiency. Sustainability, 14(8), 4647.
  • Guo, K., Yang, J., Yu, N., Lo, L., & Wang, E. (2023). Biological nitrogen fixation in cereal crops: Progress, strategies, and perspectives. Plant Communications, 4, 100499.
  • Gupta, S.K., Naresh, R.K., Chandra, M.S., Chand, S.W., Kumar, B.N., & Chandana, P. (2020). Influence of organic and synthetic fertilizers on soil carbon pool, soil aggregation and associated carbon fractions in conservation agriculture ecosystem: A review. Journal of Pharmacognosy and Phytochemistry, 9(2), 1038–1046.
  • Hasanuzzaman, M., & Fotopoulos, V. (2019). Priming and Pretreatment of Seeds and Seedlings. Springer Nature, Singapore.
  • Hoque, N., Hannan, A., Imran, S., Paul, N.C., Mondal, F., Sadhin, M.R., Bristi, J.M., Dola, F.S., Hanif, A., Ye, A., Brestic, M., & Rhaman, M.S. (2023). Plant growth-promoting rhizobacteria-mediated adaptive responses of plants under salinity stress. Journal of Plant Growth Regulation, 42, 1307–1326.
  • Huebner, L. (2022). Long-Term control of desertification: ıs organic farming superior to conventional? soil and established arid cultivation practices at SEKEM, Egypt. In: E.S.E. Omran, A.M. Negm (Eds.), Egypt’s Strategy to Meet the Sustainable Development Goals and Agenda 2030: Researchers' Contributions. Sustainable Development Goals Series (pp. 27–42). Springer, Cham.
  • Imtiaz, H., Shiraz, M., Mir, A.R., Siddiqui, H., & Hayat, S. (2023). Nano-priming techniques for plant physio-biochemistry and stress tolerance. Journal of Plant Growth Regulation, 42, 6870–6890.
  • Ishikawa, H., Batieno, B.J., Fatokun, C., Boukar, O.A. (2022). High plant density and the split application of chemical fertilizer increased the grain and protein content of cowpea (Vigna unguiculata) in Burkina Faso, West Africa. Agriculture, 12(2), 199.
  • Jayathilake, C., Visvanathan, R., Deen, A., Bangamuwage, R., & Jayawardana, B.C. (2018). Cowpea: an overview on its nutritional facts and health benefits. Journal of the Science of Food and Agriculture, 98(13), 4793–4806.
  • Kebede, E., Bekeko, Z., & Moral, M.T. (2020). Expounding the production and importance of cowpea (Vigna unguiculata (L.) Walp.) in Ethiopia. Cogent Food & Agriculture, 6(1), 1769805.
  • Kumar, A., Droby, S., White, J.F., Singh, V.K., Singh, S.K., Zhimo, V.Y., & Biasi, A. (2020). Endophytes and seed priming: Agricultural applications and future prospects. Microbial Endophytes, 107–124.
  • Ma, Y., Látr, A., Rocha, I., Freitas, H., Vosátka, M., & Oliveira, R.S. (2019). Delivery of inoculum of rhizophagus irregularis via seed coating in combination with Pseudomonas libanensis for cowpea production. Agronomy, 9(1), 33.
  • Okoth, J.K., Ochola, S.A., Gikonyo, N.K., & Makokha, A. (2017). Development of a nutrient-dense complementary food using amaranth-sorghum grains. Food Science & Nutrition, 5, 86–93.
  • Owade, J.O., Abong, G., Okoth, M., & Mwangombe, A.W. (2020). A review of the contribution of cowpea leaves to food and nutrition security in East Africa. Food Science & Nutrition, 8, 36–47.
  • Özçelebi, H.Ş., & Erman, M. (2021). Determining adaptation of some cowpea (Vigna unguiculata L. Walp) local populations and registered cultivars to Siirt ecological conditions. ISPEC Journal of Agricultural Sciences, 5(1), 235–245. (In Turkish).
  • Rodrigues, A.C., Silveira, J.A.G., Bonifacio, A., & Figueiredo, M.V.V. (2013). Metabolism of nitrogen and carbon: Optimization of biological nitrogen fixation and cowpea development. Soil Biology and Biochemistry, 67, 226-234.
  • Sheteiwy, M. S., Shao, H., Qi, W., Daly, P., Sharma, A., Shaghaleh, H., Hamoud, Y.A., El-Esawi, M.A., Pan, R., Wan, Q., & Lu, H. (2021). Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings. Journal of the Science of Food and Agriculture, 101(5), 2027–2041.
  • Singh, V.K., Singh, R., Tripathi, S., Devi, R.S., Srivastava, P., Singh, P., Kumar, A., & Bhadouria, R. (2020). Seed priming: state of the art and new perspectives in the era of climate change. In M.N.V. Prasad, M. Pietzykowski (Eds.), Climate Change and Soil Interactions (pp. 143–170). Elsevier, Amsterdam.
  • Sonkurt, M., & Çığ, F. (2019). The effect of plant growth-promoting bacteria on the development, yield and yield components of bread (Triticum aestivum L.) and durum (Triticum durum) wheats. Applied Ecology and Environmental Research, 17(2), 3877–3896.
  • Timofeeva, A.M., Galyamova, M.R., Sedykh, S.E. (2023). Plant growth-promoting bacteria of soil: designing of consortia beneficial for crop production. Microorganisms, 11(12), 2864.
  • Trehan, I., Benzoni, N.S., Wang, A.Z., Bollinger, L.B., Ngoma, T.N., Chimimba, U.K., Stephenson, S.E., Maleta, K.M., & Manary, M.J. (2015). Common beans and cowpeas as complementary foods to reduce environmental enteric dysfunction and stunting in Malawian children: study protocol for two randomized controlled trials. Trials, 16, 520.
  • Tripathi, S., Srivastava, P., Devi, R.S., Bhadouria, R., 2020. Influence of synthetic fertilizers and pesticides on soil health and soil microbiology. In: M.V.N. Prasad (Ed.) Agrochemicals Detection, Treatment and Remediation (pp. 25–54). Butterworth-Heinemann.
  • Zhang, J., Fan, C., Zhao, M., Wang, Z., Jiang, S., Jin, Z., Bei, K., Zheng, X., Wu, S., Lin, P., & Miu, H. (2023). A comprehensive review on mixotrophic denitrification processes for biological nitrogen removal. Chemosphere, 313, 137474.
  • Zhu, Y., Sheaffer, C.C., Russelle, M.P., & Vance, C.P. (1988). Dry matter accumulation and dinitrogen fixation of annual Medicago species. Agronomy Journal, 90(1), 103–108.
There are 42 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Research Articles
Authors

Mustafa Ceritoğlu 0000-0002-4138-4579

Murat Erman 0000-0002-1435-1982

Fatih Çığ 0000-0002-4042-0566

Özge Uçar 0000-0002-4650-4998

Sipan Soysal 0000-0002-0840-6609

Zeki Erden 0000-0003-1613-7768

Çağdaş Can Toprak 0000-0002-0951-7458

Publication Date May 29, 2024
Submission Date January 12, 2024
Acceptance Date April 25, 2024
Published in Issue Year 2024

Cite

APA Ceritoğlu, M., Erman, M., Çığ, F., Uçar, Ö., et al. (2024). Bio-priming Treatment with PGPB Strains in Cowpea Production Increases Grain Yield and Net Income. Research in Agricultural Sciences, 55(2), 79-88. https://doi.org/10.17097/agricultureatauni.1418425

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License


29919