Research Article
BibTex RIS Cite

Bioactive Secondary Metabolite Profile of Streptomyces netropsis DT02 and Its Biocontrol Potential against Some Phytopathogenic Fungi

Year 2026, , 1 - 10
https://doi.org/10.17097/agricultureatauni.1741687

Abstract

Actinobacteria represent a significant portion of soil microbial biomass and are renowned for their capacity to produce a wide variety of antibiotics and extracellular enzymes. Recently, researchers have concentrated on Actinobacteria with bioactive secondary metabolites in agriculture as biocontrol agents against phytopathogenic fungi. This study explores the isolation, identification, and metabolic profile of Streptomyces netropsis DT02, and evaluates its antagonistic potential against several phytopathogenic fungi, notably blue mold disease caused by Penicillium italicum in post-harvest citrus fruits. The extract exhibited vigorous antifungal activity in vitro, with inhibition zones ranging from 15 to 45 mm in diameter. The chemical metabolite profile of the crude extract of DT02 was detected using high-performance liquid chromatography-high-resolution electrospray ionization mass spectrometry, and the antifungal compounds were identified based on existing literature. The results showed that DT02 produced 13 different metabolites, including pimprinine, amphotericin B, pimprinethine, N-acetylaureothamine, prothracarcin, and aureothin. The results of these analyses indicated that the antagonistic activity of DT02 is quite substantial. This research creates opportunities for utilising metabolites from DT02 in the biocontrol of some phytopathogenic fungi in crops.

Ethical Statement

There are no ethical issues related to the research

Supporting Institution

Manisa Celal Bayar University Scientific Research Projects Coordination Unit

Project Number

2024-120

Thanks

This research was partially supported by the Manisa Celal Bayar University Scientific Research Projects Coordination Unit under project number 2024-120.

References

  • Anonymous. (July 15, 2024). Reaxys. https://www.reaxys.com/
  • Anonymous. (May 22, 2025). ChemSpider. https://www.–chemspider .com/
  • Baltz, R. H. (2017). Gifted microbes for genome mining and natural product discovery. Journal of Industrial Microbiology & Biotechnology, 44(4-5), 573-588. https://doi.org/10.1007/s10295-016-1809-9
  • Barka, E. A., Vatsa, P., Sanchez, L., Gavaut-Vaillant, N., Jacquard, C., Klenk, H.-P., Clément, C., Ouhdouch, Y., & van Wezel, G. P. (2016). Taxonomy, physiology and natural products of the Actinobacteria. Microbiology and Molecular Biology Reviews, 80(1), 1-43.
  • Chandrasekhar, V., Rajan, K., Kanakam, S. R. S., & Subramanian, S. (2025). COCONUT 2.0: A comprehensive overhaul and curation of the collection of open natural products database. Nucleic Acids Research, 53(D1), D634-D643.
  • Cheng, L., Liu, J. R., Liu, J. M., Zhang, J. H., & Wang, Q. (2023). Design, synthesis, antifungal activity and molecular docking of ring-opened pimprinine derivative containing (thio)amide structure. Pest Management Science, 79(6), 2220-2229. https://doi.org/10.1002/ps.7400
  • Cheng, Y., Lin, Y., Cao, H., & Li, Z. (2020). Citrus postharvest green mold: Recent advances in fungal pathogenicity and fruit resistance. Microorganisms, 8(3), 449. https://doi.org/10.3390/microorganisms8030449
  • Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., & Foster, G. D. (2012). The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13(4), 414-430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
  • Effmert, U., Kalderás, J., Warnke, R., & Piechulla, B. (2012). Volatile mediated interactions between bacteria and fungi in the soil. Journal of Chemical Ecology, 38(6), 665-703. https://doi.org/–10.1007/s10886-012-0135-5 Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783-791.
  • Fujii, I., Hayashi, H., Oikawa, H., & Ebizuka, Y. (2015). Biosynthesis of polyene macrolide antibiotics in actinomycetes: Architecture and engineering of gene clusters. Natural Product Reports, 32(2), 130-147. https://doi.org/10.1039/C4NP00107K
  • Goudjal, Y., Toumatia, O., Yekkour, A., Zitouni, A., Mathieu, F., & Sabaou, N. (2013). Biocontrol of Rhizoctonia solani and promotion of tomato growth by endophytic actinomycetes isolated from native plants of Algerian Sahara. Journal of Plant Pathology, 95(3), 593-600.
  • Harvey, A. L., Edrada-Ebel, R., & Quinn, R. J. (2015). The re-emergence of natural products for drug discovery in the genomics era. Nature Reviews Drug Discovery, 14(2), 111-129. https://doi.org/10.1038/nrd4510
  • Hazarika, S. N., & Thakur, D. (2020). Actinobacteria. In S. Nautiyal & C. Dion (Eds.), Beneficial Microbes in Agro Ecology: Bacteria and Fungi (pp. 443-476). https://doi.org/10.1016/B978-0-12-823414-.00021-6
  • Hernández-Montiel, L. G., Carvajal-Millán, E., Valenzuela-Soto, E. M., & Rascón-Cruz, Q. (2021). Biocontrol of postharvest fungal diseases of fruits and vegetables by antagonistic microorganisms and their bioactive compounds. Microorganisms, 9(3), 470. https://doi.org/10.3390/–microorganisms9030470
  • Joshi, B. S., Rajan, K., Kanakam, S. R. S., & Karmarkar, S. S. (1963). The structure and synthesis of pimprinine. Tetrahedron, 19(9), 1437-1439.
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2025). PubChem 2025 update. Nucleic Acids Research, 53(D1), D1516-D1525. https://doi.org/10.1093/nar/gkae1059
  • Kumar S., Stecher G., Suleski M., Sanderford M., Sharma S., & Tamura K. (2024). Molecular evolutionary genetics analysis version 12 for adaptive and green computing. Molecular Biology and Evolution, 41, 1-9.
  • Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematics (pp. 125-175). Wiley.
  • Lewis, R. E., Wiederhold, N. P., & Klepser, M. E. (2005). In vitro pharmacodynamics of amphotericin B, itraconazole, and voriconazole against Aspergillus, Fusarium, and Scedosporium spp. Antimicrobial Agents and Chemotherapy, 49(3), 945-951. https://doi.org/10.1128/AAC.49.3.945-951.2005
  • Li, Y., Chen, H., Ding, Y., Zhang, Y., Yang, J., & Zhang, Y. (2020). Woodybactin A and B, new bacterial siderophores from Streptomyces species with antifungal potential. Journal of Natural Products, 83(4), 976-983. https://doi.org/10.1021/acs.jnatprod.9b01165
  • Liu, M., Wan, Z., Yang, S., Wang, L., & Zhang, Z. (2021). Two new dipimprinine alkaloids from soil-derived Streptomyces sp. 44414B. Journal of Antibiotics, 74(7), 474-476. https://doi.org/10.1038/s41429-021-00424-3
  • Liu, Y., Ding, L., Shi, Y., Chen, M., & Li, X. (2022). Molecular networking-driven discovery of antibacterial perinadines: New tetracyclic alkaloids from the marine sponge-derived fungus Aspergillus sp. ACS Omega, 7(11), 9909-9916. https://doi.org/10.1021/acsomega.2c00402
  • Liu, Y., Heying, E., & Tanumihardjo, S. A. (2012). History, global distribution and nutritional importance of citrus fruits. Comprehensive Reviews in Food Science and Food Safety, 11(6), 530-545. https://doi.org/10.1111/j.1541-4337.2012.00197.x
  • Louw, J. P., & Korsten, L. (2015). Pathogenicity and host susceptibility of Penicillium spp. on citrus. Plant Disease, 99(1), 21-30. https://doi.org/10.1094/PDIS-02-14-0167-RE
  • Lu, X., Zhao, C., Shi, H., Chen, W., Tian, Y., & Fu, J. (2023). Nutrients and bioactives in citrus fruits: Different citrus varieties, fruit parts and growth stages. Critical Reviews in Food Science and Nutrition, 63(14), 2018-2041. https://doi.org/10.1080/10408398.2021.1920918
  • Luo, X., Chen, G., Li, Y., Guo, S., & Zhang, W. (2024). Volatile organic compounds from Streptomyces spp. and their antifungal effects against phytopathogens. Frontiers in Microbiology, 15, Article 1008921. https://doi.org/10.3389/fmicb.2024.1008921
  • Macarisin, D., Cohen, L., Eick, A., Wilson, C., & Smilanick, J. L. (2007). Penicillium digitatum suppresses production of hydrogen peroxide in host tissue during infection of citrus fruit. Phytopathology, 97(11), 1491-1500. https://doi.org/10.1094/PHYTO-97-11-1491
  • Meenakshi, S., Hiremath, J., Meenakshi, M. H., & Shivaveerakumar, S. (2024). Actinomycetes: Isolation, cultivation and its active biomolecules. Journal of Pure and Applied Microbiology, 18(1), 118-143. https://doi.org/10.22207/JPAM.18.1.48
  • Nagai, K., Kobayashi, K., Miyake, R., Tanaka, H., & Yamada, Y. (2024). Synthesis and biological evaluation of nectriatide derivatives potentiators of amphotericin B activity. Journal of Antibiotics, 77(4), 214-220. https://doi.org/10.1038/s41429-023-00700-4
  • Oskay, M. (2025). Optimization of colony polymerase chain reaction for the identification of Actinobacteria by sequencing of the 16S rDNA. In L. Karthik (Ed.), Protocols of Actinomycetes: Microbiology to Gene Editing (pp. 245-253). CRC Press. https://doi.org/10.1201/9781003398400-36
  • Poynton, E. F., van Santen, J. A., Pin, M., & Medema, M. H. (2024). The Natural Products Atlas 3.0: Extending the database of microbially-derived natural products. Nucleic Acids Research. https://doi.org/10.1093/nar/gkae1093
  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425.
  • Schimana, J., Gebhardt, K., Höltzel, A., Reichenbach, H., & Süssmuth, R. D. (2001). Aureothin, a novel polyketide antibiotic from Streptomyces thioluteus: Fermentation, isolation, and biological activity. Journal of Antibiotics, 54(2), 155-163. https://doi.org/10.7164/antibiotics.54.155
  • Shamikh, Y. I., El Shamy, A. A., Gaber, Y., & Shaaban, M. (2020). Actinomycetes from the Red Sea sponge Coscinoderma mathewsi: Isolation, diversity, and potential for bioactive compounds discovery. Microorganisms, 8(5), 783. https://doi.org/10.3390/microorganisms8050783
  • Shimizu, K. I., Kawamoto, I., Tomita, F., & Yamaguchi, I. (1982). Prothracarcin, a novel antitumor antibiotic. The Journal of Antibiotics, 35(8), 972-978.
  • Tahir, H. A. S., Gu, Q., Wu, H., Yu, Y., Guo, J., & Wu, J. (2022). Antimicrobial traits and biocontrol potential of Streptomyces lydicus against Fusarium oxysporum. Biological Control, 169, Article 104905. https://doi.org/10.1016/j.biocontrol.2022.104905
  • Torres Rodríguez, J. A., Reyes Pérez, J. J., Quiñones Aguilar, E. E., & Hernandez Montiel, L. G. (2022). Actinomycete potential as biocontrol agent of phytopathogenic fungi: Mechanisms, source and applications. Plants, 11(23), 3201. https://doi.org/10.3390/plants11233201
  • van der Meij, A., Worsley, S. F., Hutchings, M. I., & van Wezel, G. P. (2017). Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiology Reviews, 41(3), 392-416. https://doi.org/10.1093/femsre/fux005
  • Wang, M., Carver, J. J., Phelan, V. V., Sanchez, L. M., Garg, N., Peng, Y., ... Dorrestein, P. C. (2016). Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 34(8), 828--837. https://doi.org/10.1038/nbt.3597
  • Wei, Y., Fang, W., Wan, Z., Zhang, H., & Li, X. (2014). Antiviral effects against EV71 of pimprinine and its derivatives isolated from Streptomyces sp. Virology Journal, 11, Article 195. https://doi.org/10.1186/s12985-014-0195-y
  • Werneburg, M., & Hertweck, C. (2008). Chemoenzymatic total synthesis of the antiproliferative polyketide (+)-(R)-aureothin. ChemBioChem, 9(13), 2064-2066.
  • Yuan, W. M., & Crawford, D. L. (1995). Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent. Applied and Environmental Microbiology, 61(8), 3119-3128. https://doi.org/10.1128/AEM.61.8.3119-3128.1995
  • Zhou, R., Rezaei, M. N., Hosseini, M. R., & Yahia, E. M. (2018). Biological control of Penicillium italicum on citrus fruit using antagonistic yeasts: A review. Scientia Horticulturae, 239, 166-174.

Streptomyces netropsis DT02'nin Biyoaktif Sekonder Metabolit Profili ve Bazı Fitopatojen Küflere Karşı Biyokontrol Potansiyeli

Year 2026, , 1 - 10
https://doi.org/10.17097/agricultureatauni.1741687

Abstract

Aktinobakteriler, toprak mikrobiyal biyokütlesinin önemli bir bölümünü oluşturur ve çok çeşitli antibiyotikler ve hücre dışı enzimler üretme kapasiteleriyle bilinirler. Son zamanlarda araştırmacılar, tarımda fitopatojen küflere karşı biyokontrol ajanları olarak biyoaktif sekonder metabolitlere sahip Aktinobakterilere odaklanmıştır. Bu çalışma, Streptomyces netropsis DT02'nin izolasyonunu, identifikasyonunu ve metabolik profilini incelemekte ve hasat sonrası turunçgillerde Penicillium italicum'un neden olduğu mavi küf hastalığı başta olmak üzere çeşitli fitopatojen küflere karşı antagonistik potansiyelini araştırmaktadır. Ekstre, in vitro ortamda güçlü antifungal aktivite göstermiş ve inhibisyon zonları 15 ila 45 mm arasında değişmiştir. DT02'nin ham ekstresinin kimyasal metabolit profili, yüksek performanslı sıvı kromatografisi-yüksek çözünürlüklü elektrosprey iyonizasyon kütle spektrometrisi kullanılarak tespit edilmiş ve antifungal bileşikler mevcut literatüre dayanarak tanımlanmıştır. Sonuçlar, DT02'nin pimprinin, amfoterisin B, pimprinetin, N-asetilüretamin, protrakarsin ve aureotin dahil olmak üzere 13 farklı metabolit ürettiğini göstermiştir. Bu analizlerin sonuçları, DT02'nin antagonistik aktivitesinin oldukça önemli olduğunu ortaya çıkarmıştır. Bu araştırma, DT02'den elde edilen metabolitlerin, mahsullerde bazı fitopatojenik küflerin biyolojik kontrolünde kullanılması için fırsatlar yaratmaktadır.

Project Number

2024-120

References

  • Anonymous. (July 15, 2024). Reaxys. https://www.reaxys.com/
  • Anonymous. (May 22, 2025). ChemSpider. https://www.–chemspider .com/
  • Baltz, R. H. (2017). Gifted microbes for genome mining and natural product discovery. Journal of Industrial Microbiology & Biotechnology, 44(4-5), 573-588. https://doi.org/10.1007/s10295-016-1809-9
  • Barka, E. A., Vatsa, P., Sanchez, L., Gavaut-Vaillant, N., Jacquard, C., Klenk, H.-P., Clément, C., Ouhdouch, Y., & van Wezel, G. P. (2016). Taxonomy, physiology and natural products of the Actinobacteria. Microbiology and Molecular Biology Reviews, 80(1), 1-43.
  • Chandrasekhar, V., Rajan, K., Kanakam, S. R. S., & Subramanian, S. (2025). COCONUT 2.0: A comprehensive overhaul and curation of the collection of open natural products database. Nucleic Acids Research, 53(D1), D634-D643.
  • Cheng, L., Liu, J. R., Liu, J. M., Zhang, J. H., & Wang, Q. (2023). Design, synthesis, antifungal activity and molecular docking of ring-opened pimprinine derivative containing (thio)amide structure. Pest Management Science, 79(6), 2220-2229. https://doi.org/10.1002/ps.7400
  • Cheng, Y., Lin, Y., Cao, H., & Li, Z. (2020). Citrus postharvest green mold: Recent advances in fungal pathogenicity and fruit resistance. Microorganisms, 8(3), 449. https://doi.org/10.3390/microorganisms8030449
  • Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., & Foster, G. D. (2012). The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13(4), 414-430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
  • Effmert, U., Kalderás, J., Warnke, R., & Piechulla, B. (2012). Volatile mediated interactions between bacteria and fungi in the soil. Journal of Chemical Ecology, 38(6), 665-703. https://doi.org/–10.1007/s10886-012-0135-5 Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783-791.
  • Fujii, I., Hayashi, H., Oikawa, H., & Ebizuka, Y. (2015). Biosynthesis of polyene macrolide antibiotics in actinomycetes: Architecture and engineering of gene clusters. Natural Product Reports, 32(2), 130-147. https://doi.org/10.1039/C4NP00107K
  • Goudjal, Y., Toumatia, O., Yekkour, A., Zitouni, A., Mathieu, F., & Sabaou, N. (2013). Biocontrol of Rhizoctonia solani and promotion of tomato growth by endophytic actinomycetes isolated from native plants of Algerian Sahara. Journal of Plant Pathology, 95(3), 593-600.
  • Harvey, A. L., Edrada-Ebel, R., & Quinn, R. J. (2015). The re-emergence of natural products for drug discovery in the genomics era. Nature Reviews Drug Discovery, 14(2), 111-129. https://doi.org/10.1038/nrd4510
  • Hazarika, S. N., & Thakur, D. (2020). Actinobacteria. In S. Nautiyal & C. Dion (Eds.), Beneficial Microbes in Agro Ecology: Bacteria and Fungi (pp. 443-476). https://doi.org/10.1016/B978-0-12-823414-.00021-6
  • Hernández-Montiel, L. G., Carvajal-Millán, E., Valenzuela-Soto, E. M., & Rascón-Cruz, Q. (2021). Biocontrol of postharvest fungal diseases of fruits and vegetables by antagonistic microorganisms and their bioactive compounds. Microorganisms, 9(3), 470. https://doi.org/10.3390/–microorganisms9030470
  • Joshi, B. S., Rajan, K., Kanakam, S. R. S., & Karmarkar, S. S. (1963). The structure and synthesis of pimprinine. Tetrahedron, 19(9), 1437-1439.
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2025). PubChem 2025 update. Nucleic Acids Research, 53(D1), D1516-D1525. https://doi.org/10.1093/nar/gkae1059
  • Kumar S., Stecher G., Suleski M., Sanderford M., Sharma S., & Tamura K. (2024). Molecular evolutionary genetics analysis version 12 for adaptive and green computing. Molecular Biology and Evolution, 41, 1-9.
  • Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematics (pp. 125-175). Wiley.
  • Lewis, R. E., Wiederhold, N. P., & Klepser, M. E. (2005). In vitro pharmacodynamics of amphotericin B, itraconazole, and voriconazole against Aspergillus, Fusarium, and Scedosporium spp. Antimicrobial Agents and Chemotherapy, 49(3), 945-951. https://doi.org/10.1128/AAC.49.3.945-951.2005
  • Li, Y., Chen, H., Ding, Y., Zhang, Y., Yang, J., & Zhang, Y. (2020). Woodybactin A and B, new bacterial siderophores from Streptomyces species with antifungal potential. Journal of Natural Products, 83(4), 976-983. https://doi.org/10.1021/acs.jnatprod.9b01165
  • Liu, M., Wan, Z., Yang, S., Wang, L., & Zhang, Z. (2021). Two new dipimprinine alkaloids from soil-derived Streptomyces sp. 44414B. Journal of Antibiotics, 74(7), 474-476. https://doi.org/10.1038/s41429-021-00424-3
  • Liu, Y., Ding, L., Shi, Y., Chen, M., & Li, X. (2022). Molecular networking-driven discovery of antibacterial perinadines: New tetracyclic alkaloids from the marine sponge-derived fungus Aspergillus sp. ACS Omega, 7(11), 9909-9916. https://doi.org/10.1021/acsomega.2c00402
  • Liu, Y., Heying, E., & Tanumihardjo, S. A. (2012). History, global distribution and nutritional importance of citrus fruits. Comprehensive Reviews in Food Science and Food Safety, 11(6), 530-545. https://doi.org/10.1111/j.1541-4337.2012.00197.x
  • Louw, J. P., & Korsten, L. (2015). Pathogenicity and host susceptibility of Penicillium spp. on citrus. Plant Disease, 99(1), 21-30. https://doi.org/10.1094/PDIS-02-14-0167-RE
  • Lu, X., Zhao, C., Shi, H., Chen, W., Tian, Y., & Fu, J. (2023). Nutrients and bioactives in citrus fruits: Different citrus varieties, fruit parts and growth stages. Critical Reviews in Food Science and Nutrition, 63(14), 2018-2041. https://doi.org/10.1080/10408398.2021.1920918
  • Luo, X., Chen, G., Li, Y., Guo, S., & Zhang, W. (2024). Volatile organic compounds from Streptomyces spp. and their antifungal effects against phytopathogens. Frontiers in Microbiology, 15, Article 1008921. https://doi.org/10.3389/fmicb.2024.1008921
  • Macarisin, D., Cohen, L., Eick, A., Wilson, C., & Smilanick, J. L. (2007). Penicillium digitatum suppresses production of hydrogen peroxide in host tissue during infection of citrus fruit. Phytopathology, 97(11), 1491-1500. https://doi.org/10.1094/PHYTO-97-11-1491
  • Meenakshi, S., Hiremath, J., Meenakshi, M. H., & Shivaveerakumar, S. (2024). Actinomycetes: Isolation, cultivation and its active biomolecules. Journal of Pure and Applied Microbiology, 18(1), 118-143. https://doi.org/10.22207/JPAM.18.1.48
  • Nagai, K., Kobayashi, K., Miyake, R., Tanaka, H., & Yamada, Y. (2024). Synthesis and biological evaluation of nectriatide derivatives potentiators of amphotericin B activity. Journal of Antibiotics, 77(4), 214-220. https://doi.org/10.1038/s41429-023-00700-4
  • Oskay, M. (2025). Optimization of colony polymerase chain reaction for the identification of Actinobacteria by sequencing of the 16S rDNA. In L. Karthik (Ed.), Protocols of Actinomycetes: Microbiology to Gene Editing (pp. 245-253). CRC Press. https://doi.org/10.1201/9781003398400-36
  • Poynton, E. F., van Santen, J. A., Pin, M., & Medema, M. H. (2024). The Natural Products Atlas 3.0: Extending the database of microbially-derived natural products. Nucleic Acids Research. https://doi.org/10.1093/nar/gkae1093
  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425.
  • Schimana, J., Gebhardt, K., Höltzel, A., Reichenbach, H., & Süssmuth, R. D. (2001). Aureothin, a novel polyketide antibiotic from Streptomyces thioluteus: Fermentation, isolation, and biological activity. Journal of Antibiotics, 54(2), 155-163. https://doi.org/10.7164/antibiotics.54.155
  • Shamikh, Y. I., El Shamy, A. A., Gaber, Y., & Shaaban, M. (2020). Actinomycetes from the Red Sea sponge Coscinoderma mathewsi: Isolation, diversity, and potential for bioactive compounds discovery. Microorganisms, 8(5), 783. https://doi.org/10.3390/microorganisms8050783
  • Shimizu, K. I., Kawamoto, I., Tomita, F., & Yamaguchi, I. (1982). Prothracarcin, a novel antitumor antibiotic. The Journal of Antibiotics, 35(8), 972-978.
  • Tahir, H. A. S., Gu, Q., Wu, H., Yu, Y., Guo, J., & Wu, J. (2022). Antimicrobial traits and biocontrol potential of Streptomyces lydicus against Fusarium oxysporum. Biological Control, 169, Article 104905. https://doi.org/10.1016/j.biocontrol.2022.104905
  • Torres Rodríguez, J. A., Reyes Pérez, J. J., Quiñones Aguilar, E. E., & Hernandez Montiel, L. G. (2022). Actinomycete potential as biocontrol agent of phytopathogenic fungi: Mechanisms, source and applications. Plants, 11(23), 3201. https://doi.org/10.3390/plants11233201
  • van der Meij, A., Worsley, S. F., Hutchings, M. I., & van Wezel, G. P. (2017). Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiology Reviews, 41(3), 392-416. https://doi.org/10.1093/femsre/fux005
  • Wang, M., Carver, J. J., Phelan, V. V., Sanchez, L. M., Garg, N., Peng, Y., ... Dorrestein, P. C. (2016). Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 34(8), 828--837. https://doi.org/10.1038/nbt.3597
  • Wei, Y., Fang, W., Wan, Z., Zhang, H., & Li, X. (2014). Antiviral effects against EV71 of pimprinine and its derivatives isolated from Streptomyces sp. Virology Journal, 11, Article 195. https://doi.org/10.1186/s12985-014-0195-y
  • Werneburg, M., & Hertweck, C. (2008). Chemoenzymatic total synthesis of the antiproliferative polyketide (+)-(R)-aureothin. ChemBioChem, 9(13), 2064-2066.
  • Yuan, W. M., & Crawford, D. L. (1995). Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent. Applied and Environmental Microbiology, 61(8), 3119-3128. https://doi.org/10.1128/AEM.61.8.3119-3128.1995
  • Zhou, R., Rezaei, M. N., Hosseini, M. R., & Yahia, E. M. (2018). Biological control of Penicillium italicum on citrus fruit using antagonistic yeasts: A review. Scientia Horticulturae, 239, 166-174.
There are 43 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Research Articles
Authors

Çiğdem Yüksel Demirci 0000-0001-8506-9899

Mustafa Oskay 0000-0001-8693-5621

Project Number 2024-120
Early Pub Date November 9, 2025
Publication Date November 13, 2025
Submission Date July 14, 2025
Acceptance Date October 16, 2025
Published in Issue Year 2026

Cite

APA Yüksel Demirci, Ç., & Oskay, M. (2025). Bioactive Secondary Metabolite Profile of Streptomyces netropsis DT02 and Its Biocontrol Potential against Some Phytopathogenic Fungi. Research in Agricultural Sciences1-10. https://doi.org/10.17097/agricultureatauni.1741687

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29919